
Age-specific mortality and immunity 
patterns of SARS-CoV-2

Megan O’Driscoll, Gabriel Ribeiro Dos Santos, Lin Wang, Derek A. T. Cummings,  
Andrew S. Azman, Juliette Paireau, Arnaud Fontanet, Simon Cauchemez & Henrik Salje

This is a PDF file of a peer-reviewed paper that has been accepted for publication. 
Although unedited, the content has been subjected to preliminary formatting. Nature 
is providing this early version of the typeset paper as a service to our authors and 
readers. The text and figures will undergo copyediting and a proof review before the 
paper is published in its final form. Please note that during the production process 
errors may be discovered which could affect the content, and all legal disclaimers 
apply.

Received: 24 August 2020

Accepted: 23 October 2020

Accelerated Article Preview Published 
online 2 November 2020

Cite this article as: O’Driscoll, M. et al. 
Age-specific mortality and immunity 
patterns of SARS-CoV-2. Nature  
https://doi.org/10.1038/s41586-020-2918-0 
(2020).

https://doi.org/10.1038/s41586-020-2918-0

Nature  |  www.nature.com

Accelerated Article Preview

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-020-2918-0


Nature  |  www.nature.com  |  1

Article

Age-specific mortality and immunity 
patterns of SARS-CoV-2

Megan O’Driscoll1,2 ✉, Gabriel Ribeiro Dos Santos1,2, Lin Wang1,2, Derek A. T. Cummings3, 
Andrew S. Azman4,5, Juliette Paireau2,6, Arnaud Fontanet6,7, Simon Cauchemez2,8 ✉  
& Henrik Salje1,2,8 ✉

Estimating the size and infection severity of the SARS-CoV-2 epidemic is made 
challenging by inconsistencies in available data. The number of COVID-19 deaths is 
often used as a key indicator for the epidemic size, but observed deaths represent only 
a minority of all infections1,2. Additionally, the heterogeneous burden in nursing homes 
and variable reporting of deaths in elderly individuals can hamper direct comparisons 
across countries of the underlying level of transmission and mortality rates3. Here we 
use age-specific COVID-19 death data from 45 countries and the results of 22 
seroprevalence studies to investigate the consistency of infection and fatality patterns 
across multiple countries. We find that the age distribution of deaths in younger age 
groups (<65 years) is very consistent across different settings and demonstrate how 
this data can provide robust estimates of the share of the population that has been 
infected. We estimate that the infection-to-fatality ratio (IFR) is lowest among 5-9 years 
old, with a log-linear increase by age among individuals older than 30 years. Population 
age-structures and heterogeneous burdens in nursing homes explain some but not all 
of the heterogeneity between countries in infection-fatality ratios. Among the 45 
countries included in our analysis, we estimate approximately 5% of these populations 
had been infected by the 1st of September 2020, with much higher transmission likely 
to have occurred in a number of Latin American countries. This simple modelling 
framework can help countries assess the progression of the pandemic and can be 
applied wherever reliable age-specific death data exists.

As SARS-CoV-2 continues its rapid global spread, increased understand-
ing of the underlying level of transmission and infection severity are 
crucial for guiding pandemic response. While the testing of COVID-19 
cases is a vital public health tool, variability in surveillance capacities, 
case-definitions and health-seeking behaviour can cause difficulties 
in the interpretation of case data. Due to more complete reporting, 
COVID-19 deaths are often seen as a more reliable indicator of epidemic 
size. If reliably reported, the number of COVID-19 deaths can be used 
to infer the total number of SARS-CoV-2 infections using estimates of 
the infection fatality ratio (IFR, the ratio of COVID-19 deaths to total 
SARS-CoV-2 infections). Estimates of the IFR derived from seropreva-
lence studies that carefully estimate the number of individuals with 
detectable antibodies can help make the link between deaths and 
total infections as well as refine estimates of the relative burden in 
different age groups1. While it is clear that infection severity increases 
significantly with age2,4, there remain key unanswered questions as to 
the consistency of mortality patterns across countries. Underlying het-
erogeneities in the age structure of the population, or in the prevalence 
of comorbidities can contribute to differences in the levels of observed 
COVID-19 fatalities5. In addition, when looking at the total number of 

COVID-19 deaths, the level of transmission amongst the general popula-
tion can be difficult to disentangle from large outbreaks in vulnerable 
populations such as nursing homes and other long-term care settings. 
Indeed for many countries, the SARS-CoV-2 pandemic has been charac-
terized by a heavy burden in nursing home residents, with over 20% of 
all reported COVID-19 deaths occurring in nursing homes in countries 
such as Canada, Sweden and the United Kingdom6. In other countries, 
such as South Korea and Singapore, few COVID-19 deaths have been 
reported in nursing homes6. In this context, simply comparing the total 
number of deaths across countries may provide a misleading represen-
tation of the underlying level of transmission. Focusing on COVID-19 
death data in younger individuals, however, may provide more reliable 
insights into the underlying nature of transmission.

Seroprevalence surveys provide valuable information on the 
proportion of the population that have ever experienced an infec-
tion7–10, however, they can be subject to a number of biases and vari-
able performance of different assays can complicate comparisons 
of results across studies11. Here, we present a model framework that 
integrates age-specific COVID-19 death data from 45 countries with 22 
national-level seroprevalence surveys, providing new insights into the 
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consistency of infection fatality patterns across countries (Figure 1a). 
We use our model to produce ensemble IFR estimates by age and sex in 
a single harmonized framework as well as estimates of the proportion 
of the population infected in each country.

Age-specific mortality patterns
Using population age structures and age-specific death data, we com-
pare the relative number of deaths by age within each country, using 
55-59 year olds as the reference group. We find a very consistent pat-
tern in the relative risk of death by age for individuals <65 years old 
across countries and continents, with a strong log-linear relationship 
between age and risk of death for individuals 30-65 years old (Figure 1b, 
Supplementary Methods S1). The observed relative risk of death in 
older individuals appears substantially more heterogeneous across 
locations. Given the potential for important variability in mortality 
associated with nursing home outbreaks across countries, we first 
investigate mortality patterns specifically in the general population, 
using age-specific deaths ≥65 from England, where granularity of the 
data allows us to remove deaths in nursing home populations. We find 
that the log-linear relationship between age and risk of death continues 
into older age groups (Figure 1b). To assess the generalizability of data 
from England to other countries, we use these estimates to reconstruct 
the number of non-nursing home deaths in 13 other countries and find 
the predictions consistent with reported numbers of non-nursing home 
deaths (Figure 1c, Supplementary Methods S2).

In order to translate relative risks of death by age to underlying IFR, 
we combine age-specific death data with 22 seroprevalence surveys, 
representing 16 of the 45 countries (multiple studies are available 
for Belgium, England, Scotland, Sweden and the Netherlands, Sup-
plementary Table S1). We use daily time-series of reported deaths to 
reconstruct the timing of infections and subsequent seroconversions. 
To limit biases that can be introduced by outbreaks in nursing homes 
and potentially variable reporting practices of fatalities amongst indi-
viduals ≥65, we fit our model investigating the relationship between 
seroconversion and mortality exclusively to death data from those <65 
years old. To infer IFRs in age groups ≥65 years, we use our estimates 
of the relative risk of death derived from England non-nursing home 
deaths. As our baseline model, we use an ensemble model where we 
include results from all national-level seroprevalence studies within a 
single framework. In addition, we consider separate models where we 
use the results of each individual serostudy to investigate the consist-
ency of estimates provided by different studies. As older individuals 
have fewer social contacts12 and are more likely to be isolated through 
shielding programmes we assume a baseline relative infection attack 
rate of 0.7 for individuals aged ≥65, relative to those <65, and assume 
equal infection attack rates across age groups <65 years. We find that 
age-specific IFRs estimated by the ensemble model range from 0.001% 
(95% Credible Interval [CrI]: 0-0.001) in those aged 5-9 (ranging from 
0-0.002% across individual national-level serostudies) to 8.29% (95%CrI: 
7.11-9.59%) in those aged 80+ (range: 2.49-15.55% across individual 
national-level serostudies) (Figure 2a). We estimate a mean increase 
in IFR of 0.59% with each 5-year increase in age (95%CrI: 0.51-0.68%) 
for ages ≥10. We estimate that the risk of death given infection for men 
is significantly higher than that of women (Figure 2a) particularly in 
older individuals with ensemble IFR estimates of 10.83% for men aged 
80+ (95%CrI: 9.28-12.52%, individual serostudy range: 3.25-20.30%) and 
5.76% for women aged 80+ (95%CrI: 4.94-6.66%, individual serostudy 
range: 1.73-10.80%), consistent with previous findings13,14.

Consistency of IFRs across serostudies
We use our model framework to facilitate robust comparisons of IFRs 
across settings, considering only age-specific deaths amongst <65 year 
olds. Using country-specific demographic distributions (both age and 

sex) we estimate population-weighted IFRs for each country. Taking 
France as a reference population, the ensemble model estimates a 
population IFR of 0.79% (95%CrI: 0.68-0.92%) though we find notable 
heterogeneity in IFR estimates as suggested by individual national-level 
seroprevalence studies, with a median range of 0.24-1.49% (Figure 2b). 
In particular, seroprevalence studies from New York City (2.28, 95%CrI: 
2.15-2.42%), Scotland (1.49%, 95%CrI: 1.25-1.82%) and England (1.41%, 
95%CrI: 1.38-1.44%) suggest a significantly higher IFR while studies in 
Kenya (0.24%, 95%CrI: 0.23-0.25%), Slovenia (0.25%, 95%CrI: 0.24-0.30%) 
and Denmark (0.26%, 95%CrI: 0.24-0.32%) support a lower IFR than 
that of the ensemble model. We note that, the application of age- and 
sex-specific IFR estimates suggested by individual national-level sero-
prevalence studies at the lower end of the scale (e.g. Kenya, Slovenia, 
Denmark), to mortality data in highly-impacted settings would imply 
attack rates >100% (Figure S3). Potential explanations for the variable 
IFR estimates observed across settings include different prevalences 
of high-risk populations (e.g. individuals with comorbidities), differ-
ences in methodology and representativeness of seroprevalence stud-
ies, heterogeneities in availability and quality of care or variations in 
reporting of COVID-19 deaths. We have fit our model to seroprevalence 
data adjusted for reported assay sensitivity and specificity but find that 
using unadjusted estimates provides similar results (Figure S5). As the 
duration of SARS-CoV-2 seropositivity amongst infected individuals is 
as-yet unclear15, in sensitivity analyses we explore the potential effect of 
waning antibodies over time. In an extreme scenario with assumed 5% 
exponential decay of seroconversions per month the ensemble model 
estimates a population IFR of 0.65% in France (95%CrI: 0.56-0.73%) 
(Figure S4). Further, we demonstrate that our results are robust to dif-
ferent assumptions regarding the mean delay between infection and 
seroconversion (Figure S4). There may also be individuals who never 
seroconvert or only develop a T-cell response, and would be missed 
in these studies16. Of the studies included in our analysis, we find that 
those conducted amongst blood donors (which exclude children and 
require individuals to be asymptomatic at the time of sampling) do 
not give significantly different results to those conducted amongst 
the general population (Figure S6). However, further comparisons 
are needed to fully understand the representativeness of different 
serological study designs.

Considering the demographic structures of each country, we find 
that population-weighted IFR estimates by the ensemble model are 
highest for countries with older populations such as Japan (1.09%, 
95%CrI: 0.94-1.26%, individual serostudy range: 0.33-2.05%) and Italy 
(0.94%, 95%CrI: 0.80-1.08%, individual serostudy range: 0.28-1.76%), 
whilst the lowest IFRs are for Kenya (0.09%, 95%CrI: 0.08-0.10%, indi-
vidual serostudy range: 0.03-0.17%) and Pakistan (0.16%, 95%CrI: 
0.14-0.19%, individual serostudy range: 0.05-0.31%) (Figure 2c). Our 
ensemble model reproduces the reported seroprevalence values for the 
majority of studies including temporal dynamics. However, consistent 
with a substantial heterogeneity in IFR across countries, the ensemble 
model cannot fully reconcile the relationship between reported sero-
prevalence and age-specific death data in some locations (Figure 3b). 
Of the 45 countries included in our analysis, representing 3.4 billion 
people, we estimate an average of 5.27% (95%CrI: 4.51-6.20%, individual 
serostudy range: 2.80-13.97%) of these populations had been infected 
by the 1st of September 2020 ranging from 0.06% (95%CrI: 0.04-0.09%, 
individual serostudy range: 0.02-0.20%) in South Korea to 62.44% 
(95%CrI: 54.07-72.90%, individual serostudy range: 33.13-207.20%) in 
Peru. These results indicate large heterogeneity in the level of transmis-
sion across countries, with particularly high attack rates estimated in 
many South American countries. Given the underlying heterogeneity 
in IFR that could not be captured by the ensemble model, it is important 
to consider the full range of uncertainty in these estimates as suggested 
by individual seroprevalence studies (grey points in Figure 3b). Esti-
mates of high transmission levels in some South American countries 
are consistent with recent subnational seroprevalence studies17–19. Our 
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estimates are also consistent with mathematical modelling efforts for 
individual countries, where additional metrics of epidemic size (e.g. 
numbers of cases, hospitalizations and/or ICU admissions) have been 
considered13,20,21 (Figure S7). The medium and longer term implications 
for the pandemic in countries which have experienced high levels of 
infection remain unclear; in particular, whether there exists sufficient 
immunity to halt the epidemic locally22.

Heterogeneities in ≥65 mortality
Using our model framework we estimate the number of deaths expected 
in the absence of nursing home transmission in those aged ≥65 years, 
given the reported number of deaths in younger age groups, and com-
pare them to the reported number of COVID-19 deaths in ≥65 year olds 
(Figure 4a). We find that many countries in South America had signifi-
cantly fewer reported deaths in individuals ≥65 years than expected, 
consistent with under-reporting of COVID-19 deaths amongst elderly 
individuals. For example, we find that in Ecuador there are 220 fewer 
reported deaths per 100,000 in those ≥65 years than expected (95%CrI: 
200-240), equivalent to approximately 2,800 missing deaths. While 
lower infection attack rates in elderly populations due to reduced con-
tacts or successful shielding policies may also explain lower mortality 
rates, in sensitivity analyses we show that for some countries unrealis-
tically low infection attack rates amongst ≥65 year olds compared to 
the rest of the population would be required to reconcile the reported 
number of deaths in these age-groups (Figure S8).

By contrast, for many European countries we observe a higher inci-
dence of deaths in older individuals than expected (Figure 4a). This 
is consistent with the large proportion of reported COVID-19 deaths 
attributable to outbreaks in nursing homes, highlighting the enormous 
burden experienced by these communities in many higher-income 
countries23,24. We use the age and sex-distribution of nursing home 
residents to derive a population-weighted IFR of 22.25% (95%CrI: 19.06-
25.74%) among French nursing home residents, assuming individu-
als in nursing homes are 3.8 times more frail than individuals in the 
general population of the same age and sex, as previously estimated25 
(Figure 4b). Using this estimate of the IFR would suggest that 7.28% 
of the French nursing home population had been infected by the 1st 
of September 2020 (95%CrI: 6.29-8.49%), a 1.70 fold higher infection 
attack rate than the general population (Supplementary Methods S3). 
In our baseline model we derive IFR estimates amongst the general 
population (i.e. excluding nursing home deaths) so as to facilitate 
robust comparisons of IFR and general population transmission across 
settings. However, we demonstrate that where high rates of infection 
have occurred amongst nursing home residents, overall IFRs will be 
significantly greater than in scenarios where these populations have 
been successfully shielded or experienced little exposure (Figure 4c). 
For example, in France, including nursing homes deaths increases the 
IFR from 0.74% for the general population (95%CrI: 0.64-0.86%) to 1.10% 
overall (95%CrI: 0.95-1.28%). This highlights the complexity in compar-
ing headline IFR estimates across populations where very different 
levels of transmission may have occurred in these hyper-vulnerable 
communities.

Discussion
In our analysis we assess the relationship between seroprevalence and 
the age-specific number of COVID-19 deaths across many settings. 
Accounting for population demographics and variable mortality bur-
dens amongst elderly populations, we find considerable heterogeneity 
in the overall IFR of SARS-CoV-2 across settings, suggesting additional 
important drivers of infection fatality ratios.

Seroprevalence surveys have, to date, shown inconsistent patterns 
in age-specific infection attack rates across settings (Figure S10) as 
contact patterns are likely to have changed significantly over the course 

of the pandemic. In sensitivity analyses we find our results to be rela-
tively consistent when using different assumed age-specific infection 
attack rates (Figure S9). Here we have used data from national report-
ing systems of COVID-19 associated deaths. However, in some settings 
these may not capture all deaths associated with COVID-19. It has been 
estimated for a subset of countries (N=6/45) that reported COVID-19 
deaths were between 40% undercounted to 10% overcounted as com-
pared to excess death estimates26. Assuming that these differences 
occur equally across all age groups would result in a change of mean 
IFR for these countries of 0.66% to 0.87%. Note that this represents an 
extreme scenario, as most unaccounted for deaths are likely to be in 
the oldest age groups, which would not affect our estimates26. We note 
that there are a number of complexities in the interpretation of excess 
death data that can inhibit their direct use in assessments of IFR. Specifi-
cally, excess death estimates are highly sensitive to the reference time 
period used (Figures S11-S12), frequent negative excess deaths occur, 
especially in younger ages (Figure S12), and there is limited availability 
of excess deaths for narrow age-groups or outside resource-rich coun-
tries. While both seroprevalence and reported COVID-19 death data 
can be subject to potential limitations, considering these data across 
multiple settings in a harmonized framework allows us to robustly 
assess trends in the transmission and fatality rates of SARS-CoV-2 and 
derive global ensemble estimates.

Translating the number of COVID-19 deaths into estimates of the 
number of infections requires careful consideration of fatalities from 
outbreak events in highly vulnerable populations. By providing a bench-
mark of the expected number of deaths by age in older individuals, our 
approach allows us to identify countries where excess transmission in 
nursing home populations has likely occurred. We demonstrate how 
outbreaks in nursing homes can drive overall population IFRs, through 
both increased attack rates and increased vulnerability. The results 
and modelling framework we present demonstrate how age-specific 
death data can be used to robustly reconstruct the underlying level 
of transmission. This approach could be applied at sub-national scale 
and may be of particular use in settings where there do not exist the 
resources to carry out large, representative seroprevalence studies.
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Fig. 1 | Patterns of COVID-19 mortality across settings. (A) Countries with 
age-specific death data (beige tiles) and locations with seroprevalence data 
(coloured points). (B) Estimated median and 95% credible interval (CrI) of the 
proportion of the population that have died in each age group, relative to the 
proportion that have died among 55-59 year olds in that country (black dots 
and lines), plotted on a log-linear scale. Coloured dots represent the country- 
and age-specific risks of COVID-19 death in the population relative to that of  
55-59 year olds observed from reported death data, accounting for population 
age distributions (Supplementary Methods S1) (N=538,477 reported deaths). 
All data points are plotted at the midpoint of the reported age group. The grey 

shaded areas highlight the relative risks of death by age for age groups ≥65, 
excluded from model fitting and black stars represent estimates inferred from 
England data only which are derived independent of nursing home deaths. (C) 
Comparing the reconstructed number of deaths with reported data for 
age-groups 60 or 65+ for a subset of countries where nursing home deaths 
could be excluded. Black dots and lines indicate the estimated median and 
95%CrI; coloured bars show the reported incidence of non-nursing home 
deaths aged ≥60. Countries labelled with an asterisk * indicate where the 
number of deaths were reconstructed for ages 65+, to align with the reported 
age-groups for each country.
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Fig. 2 | Infection fatality ratio (IFR) estimates. (A) Estimated median and 95% 
credible interval (CrI) of the IFR, stratified by age and sex and plotted on a 
log-linear scale. The IFR is estimated with the ensemble model (filled dots and 
black lines). Black stars on the right-hand side represent the estimated IFRs for 
age-groups ≥65, which were excluded from the fitting of the ensemble model. 
The coloured shaded dots represent median IFRs estimated from separately 
fitting to each individual serosurvey. (B) Population-weighted IFR estimates 
derived from separately fitting individual serological surveys in the model and 
using France as a reference population, with points and lines indicating the 

median and 95%CrI. The blue dashed line and ribbon indicate the median and 
95%CrI of the population-weighted IFR produced by the ensemble model. 
Hollow dots represent the estimates from subnational serological surveys that 
were excluded from the fitting of the ensemble model. (C) Median and 95%CrI 
of the population-weighted IFRs estimated by the ensemble model for each of 
the 45 countries, coloured by continent. Grey shaded dots represent the 
median estimates for each country, derived from fitting the model separately 
to each individual seroprevalence survey.
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Fig. 3 | Infection attack rates. (A) Estimates of the infected population 
proportion for each country as of the 1st of September 2020*. Grey shaded dots 
indicate the median estimates by fitting the model with each individual 
seroprevalence survey. Coloured dots and lines represent the median and 95% 
credible intervals (CrI) estimated by the ensemble model. *The y-axis has been 
capped at 1. In Figure S4 we show the same graph with the full range of values. 
(B) Proportion seropositive over time for each of the 12 countries with 
national-level seroprevalence data. Green curve and ribbon indicate the 
median and 95%CrIs estimated by the ensemble model. Dots and lines 

represent the mean and 95% binomial confidence interval reported by the 
published seroprevalence data. For countries with > 1 seroprevalence surveys, 
black dots and lines correspond to the study-1 as referenced in Figure 2 and 
Supplementary Table S1, whereas pink dots and lines correspond to the study-2 
(e.g. Belgium-2) and navy dots and lines to study-3. Blue shaded regions 
indicate the start and end dates of sampling for each seroprevalence survey. 
Grey dashed lines and ribbons represent the median and 95%CrI model 
estimates derived from separately fitting to each individual serostudy.
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Fig. 4 | Infection fatality patterns amongst ≥60s. (A) Difference between the 
reported and expected incidence of COVID-19 deaths per 100,000 population 
amongst ≥60s or ≥65s in each country. Coloured bars represent the median 
difference and black lines represent 95% credible intervals (CrIs). Countries 
labelled with an asterisk * indicate where the number of deaths were 
reconstructed for ages 65+, to align with the reported age-groups for each 
country (N=429,039 reported deaths 60 or 65+). (B) Population-weighted IFRs 
for the general population and nursing home residents, using France as a 
reference population (N=10,560 reported deaths amongst nursing home 
residents and N=20,528 amongst the general population). The relative frailty of 

nursing home residents is assumed to be 2 (yellow), 3.8 (green), or 6 (blue). 
Dots and lines indicate the median and 95%CrIs estimated by the ensemble 
model. (C) Population-weighted IFR in France, estimated with different 
assumed infection attack rates and frailty of nursing home residents relative to 
those of the same age and sex in the general population. Coloured ribbons 
indicate 95%CrIs and the black dashed line represents the median 
population-weighted IFR estimated when assuming a zero infection attack rate 
amongst nursing home residents (N=10,560 reported deaths amongst nursing 
home residents and N=20,528 amongst the general population).
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Methods

Data
Age- and sex- specific COVID-19 fatality data. We collated national- 
level age-stratified COVID-19 death counts from official government 
and department of health webpages and reports for 45 countries. Where 
available, the stratification by both age and sex were used. Sub-national 
age-stratified death counts were additionally collated for 4 regions 
where seroprevalence surveys had been conducted. For countries where 
information on age was missing for a subset of deaths, we assumed 
the age-distribution of the missing subset to be the same as that of the 
deaths with available age data. Information on age was missing for 29% 
of deaths in Spain. In addition, the time series of daily reported deaths 
from each country/region were obtained from the COVID-19 Data Re-
pository by the Center for Systems Science and Engineering (CSSE) at 
Johns Hopkins University27. Age- and sex-specific population data were 
obtained from the United Nations 2019 World Population Prospects28,29.

Seroprevalence studies. We used data from 25 SARS-CoV-2 sero-
prevalence surveys from 20 countries/regions where the results were 
representative of the general population and where age-stratified 
death data were also available, shown in Figure 1a and Supplementary 
Table S1. In the ensemble model we consider only the 22 national-level 
seroprevalence surveys, representing 16 countries. Where estimates of 
seroprevalence reported by individual studies had not been adjusted 
for the performance of the serological assay, we used the reported 
values of assay sensitivity and specificity to adjust the reported values 
(Supplementary Table S1). Seroprevalence values from 24/25 studies 
included in our analysis were adjusted for assay performance, while the 
serological assay used by the remaining 1 study had not been reported 
at the time of publishing.

Model
We combined age- and sex-specific COVID-19 death data from 45 coun-
tries with data from 15 seroprevalence surveys, to jointly infer the age- 
and sex-specific IFRs and country-specific cumulative probabilities of 
infection. Age- and sex-specific IFRs were estimated in 5-year 
age-groups, with individuals aged 80+ considered as a single age group. 
Let Nc a s, ,  be the population size for the age group a of sex s in country 
c. The expected number of deaths for the age group a of sex s in coun-
try c, Dc a s, ,  is estimated as shown in equation 1, which we assume to 
follow a Poisson distribution. Λc  denotes the cumulative probability 
of infection in country c, δa the relative probability of infection in 
age-group a, and IFRa s, the infection fatality ratio of age-group a and 
sex s. This assumes that age- and sex-specific IFRs are constant over 
the course of the pandemic. Where improvements in COVID-19 out-
comes have occurred over time, our estimates would represent the 
average probabilities to-date.

D N δ IFR= ⋅ Λ ⋅ ⋅ (1)c a s c a s c a a s, , , , ,

The expected number of deaths estimated by 5-year age-groups 
were summed to match the corresponding age-groups of observed 
deaths when reported in coarser age-groups. We fit exclusively to the 
reported number of deaths for age groups <65 years for each country 
(i.e. including all age-groups where the upper bound is <65 years). IFRs 
for age groups ≥65 were derived from age-specific death data reported 
by the Office for National Statistics (ONS) in England30, which allows 
us to exclude the age-specific number of deaths among nursing home 
residents (Supplementary Methods S2). As an external validation, we 
apply these IFRs to reported death data for a subset of 13 countries 
where an adjustment for deaths occurring in nursing homes could be 
applied (Supplementary Methods S2).

To align estimates of the cumulative probability of infection, Λc , 
with data from seroprevalence surveys, we used daily time-series of 

reported deaths to infer the timing of infections and subsequent  
seroconversions. We assumed a gamma distributed delay between 
onset and death with mean of 20 and standard deviation of 10 days31 
and a gamma distributed delay between infection and onset with mean 
6.5 and standard deviation 2.6 days32. The delay between onset and 
seroconversion was assumed to be gamma distributed with a  
mean of 10 and standard deviation of 8 days33. We derive the approxi
mated seroprevalence at a given survey period t, λ c t, , as shown in 
equation 2. Here, Sc i,  is the inferred number of seroconversions in 
country c on day i, as inferred from the convolution of the death 
time-series, Dc i,  is the number of new deaths reported in country c on 
day i, and Tc is the date of reporting of the age-stratified cumulative 
death data.

∑ ∑λ S D= Λ ⋅ / (2)c t c
i

t

c i
i

T

c i,
=1

,
=1

,

c

We include all data from national-level seroprevalence studies in 
an ensemble model, where the expected seroprevalence is assumed 
to follow a Beta distribution with unknown variance parameter, κ, as 
shown in equation 3. To investigate the contribution of different sero-
logical studies to the likelihood the model was fit separately to data 
from each individual seroprevalence survey, including an additional 
3 subnational seroprevalence studies (Supplementary Table S1). For 
each seroprevalence survey the expected number of seropositive 
individuals in country c at sampling period t, NPosc t, , is assumed to 
follow a Binomial distribution as shown in equation  4, where 
NSamplesc t,  is the number of serological samples taken in country c 
at time t34.

∼ ( )λ Beta λ κ, (3)c t c t, ,

∼ ( )NPos Binomial NSamples λ, (4)c t c t c t, , ,

All parameters were estimated in a Bayesian framework using RStan35 
using R version 3.6.1. We assumed uniform priors on all parameters, 
between -50 and -0.001 on a log scale for all IFR estimates, and between 
-50 and 2 on a log scale for all estimates of the cumulative probability of 
infection. The model was run with 3 chains of 10,000 iterations each. 
95% credible intervals (CrI) are calculated by taking the 0.025 and 0.975 
quantiles of the posterior distribution.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data Availability
Data is available at https://github.com/meganodris/International- 
COVID-IFR. Queries can be addressed to mo487@cam.ac.uk

Code Availability
All code necessary to reproduce this analysis is available at https://
github.com/meganodris/International-COVID-IFR
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