Vaccines and Related Biological Products Advisory Committee Meeting

Individuals using assistive technology may not be able to fully access the information contained in this file. For assistance, please send an e-mail to: ocod@fda.hhs.gov and include 508 Accommodation and the title of the document in the subject line of your e-mail.

TECHNION

of Technology

The Gertner

Booster protection against confirmed infections and severe disease - data from Israel

Israeli MOH, Weizmann Institute of Science, Gertner Institute, Hebrew University & Technion

Sept. 17th, 2021

OF JERUSALEM

Sharon Alroy-Preis, MD, MPH, MBA

Director of public Health Services, Ministry of Health (MOH), Israel

Ron Milo, PhD

Professor at the Weizmann Institute of Science, Israel

Sharon Alroy-Preis & Ron Milo have no competing financial interests to disclose.

Israel MOH and Pfizer have a data sharing agreement. In relation to the immunity waning and booster effectiveness studies presented here only final results of the analysis were shared with Pfizer.

Israel began a vaccination campaign at the end of 2020 during a surge in cases

The vaccination campaign started early in Israel using the Pfizer BNT162b2 with 3 week regimen

Over 100-fold decrease in cases following vaccination campaign (in conjunction with partially effective lock-down)

Impact and effectiveness of mRNA BNT162b2 vaccine against SARS-CoV-2 infections and COVID-19 cases, hospitalisations, and deaths following a nationwide vaccination campaign in Israel: an observational study using national surveillance data

Eric J Haas, Frederick J Angula, John M McLaughlin, Emilia Anis, Shephend R Singer, Farid Khan, Nati Brooks, Meir Smaja, Gabriel Mirozs, Kaijie Pan, Jo Southern, David L Swendlow, Luis Jodar, Yeheskal Levy, Sharon Alexy-Preis

Israel reached high levels of population-wide immunity early on

Source: Official data collated by Our World in Data – Last updated 12 September 2021, 12:00 (London time) Note: Alternative definitions of a full vaccination, e.g. having been infected with SARS-CoV-2 and having 1 dose of a 2-dose protocol, are ignored to maximize comparability between countries. OurWorldInData.org/coronavirus • CC BY

Israel reached high levels of population-wide immunity ≈3 months before most countries

Israel has large testing capacity (16,000 daily tests per million) & comprehensive electronic COVID19 records for the entire population

During June alpha was overtaken by the delta variant in Israel

OF HE

Israel now experiences its highest levels of infection (delta variant) in spite of widespread (>60%) 2nd dose vaccination

Daily cases rose by more than 100-fold in 1.5 months

new daily confirmed cases per million people 1000 800 Based on PCR testing 600 performed in Israel for both symptomatic and asymptomatic 400 individuals 200 0 06/27 07/07 07/17 07/27 08/06 08/16 08/26 MINISTRY **OF HEALTH**

Severe active cases increased >10-fold in a month

Severe disease: resting respiratory rate >30 breaths per minute, or oxygen saturation <94%, or PaO2/FiO2 <300

Waning immunity was observed across age groups

Rate of confirmed **SARS-CoV-2 infections** stratified by vaccination period and age group Per 1000 persons, during July 11, 2021 and July 31, 2021

Waning immunity also observed for severe disease in 60+ group

Per 1000 persons, during July 11, 2021 and July 31, 2021

MINISTR

Goldberg et al., https://www.medrxiv.o rg/content/10.1101/20 21.08.24.21262423v1

Waning immunity against severe disease may occur also in younger age groups

Rates of severe COVID-19 stratified by vaccination period and age group per 1000 persons, July 11 - Aug 15, 2021

Even a seemingly modest 12 percentage point decline in effectiveness could translate to a 5-fold increase in severe cases among the vaccinated

- Effectiveness in April for people vaccinated in Jan-March was high (e.g. 97%)
- Effectiveness in July for people vaccinated in January was reduced (e.g. 85%)

97% VE \rightarrow 3% relative risk

85% VE \rightarrow 15% relative risk

5-fold increase in relative risk

Based on evidence for waning in Israel, and the trajectory towards exceeding national hospitalization capacity given the rapid rise in severe cases, Israel decided to begin a 3rd vaccination campaign on July 30th, starting with the elderly.

Booster campaign began in Israel on July 30th

>2.8 million booster doses to date

MINISTRY OF HEALTH

Large majority of elderly population received a 3rd dose

Overall half of the eligible population received a 3rd dose (eligibility begins 5 months after the second dose)

Updated: Sep. 13, 2021

Booster analysis covers most of the 60+ population Data on 60+ who were fully vaccinated before March 2021 Analysis period from August 10 to August 31

MINISTR

Reduction in risk due to booster is expected to be observed after ≈2 week delay

Booster protection against confirmed **infection** as a function of time post vaccination **ages 60+**

Poisson regression adjusted for age, gender, demographic group, 2nd dose period and calendar day. Based on data from August 10 to August 31

Bar-on et al., https://www.medrxiv.o rg/content/10.1101/20

21.08.27.21262679v1

Booster protection against confirmed **infection** as a function of time post vaccination **ages 60+**

Poisson regression adjusted for age, gender, demographic group, 2nd dose period and calendar day. Based on data from August 10 to August 31

Relative risk for booster vaccinated is ≈11-fold lower against confirmed infection for ages 60+

Poisson regression adjusted for age, gender, demographic group, 2nd dose period and calendar day. Based on data from August 10 to August 31

Similar booster protection against confirmed **infection** is observed for **ages 50-59**

Poisson regression adjusted for age, gender, demographic group, 2nd dose period and calendar day. Based on data from August 13 to Sept 10

Similar booster protection against confirmed **infection** is observed for **ages 40-49**

Poisson regression adjusted for age, gender, demographic group, 2nd dose period and calendar day. Based on data from August 20 to Sept 10

Results were tested by various methods and show high protection

- Using matching of booster-vaccinated people with corresponding 2-dose vaccinated individuals (similar to Dagan et al.) → we got **11.6-fold** reduction
- Comparing 12+ days to 4-6 days post vaccination (when booster has little effect on confirmed infections) → we got 5.4-fold reduction

Booster provides >10-fold reduction in relative risk of severe disease in 60+ age group

(Poisson regression controlling for age, gender, demographic group, 2nd dose period, and calendar day)

Vaccine effectiveness (VE) **against delta** after **booster dose** returns to VE levels similar to **recent 2nd dose against alpha**

- If VE after waning is 50% for infection and increases 10-fold it becomes 95%
- If VE after waning is 80% for severe and increases 10-fold it becomes >97%

 \rightarrow similar to reported values in first few months after 2nd dose (e.g. Dagan et al., Polack et al.)

The reproduction number was high in the two months prior to decision on booster dose, with fully vaccinated cases rising rapidly

06/29 07/09 07/19 07/29 08/08 08/18 08/28 \rightarrow doubling every 10 days

The reproduction number started decreasing in sync with the expected timing of the booster effect

Large fraction of the older population received a third dose, leading to a substantial decrease in confirmed infections among people over 60y

Following the third dose, severe cases sharply decreased

Our model's projections are that without the booster, or if the booster was administered a few weeks later, hospitalization could have significantly exceeded the national capacity

active severe cases

Rate of systemic adverse events by dose (under-reporting expected in all cases)

2nd dose

3rd dose

Rate of local adverse events by dose (under-reporting expected in all cases)

Adverse events reported following 3rd dose (>2.8 million booster doses administered) under-reporting expected

Non serious reports	Serious reports		
1,328	19		

All hospitalized and deceased patients were investigated by independent clinical workgroup using all clinical data

Serious adverse events following 3rd dose ages 12-64 out of 2,004,064 vaccinees

"	Age group	Sex	Time post dose	Case details		Causality	
A	55-59	F	immediately	Allergic reaction Dyspnea, tongue swelling, palpitations, also has allergies and carries an epipen		Yes	
В	50-54	F	2.5h	Allergic reaction edema in vocal chords, prophylactic intubation (h/o difficulty breathing and swelling of tongue following 1 st dose, no allergic reaction following 2 nd dose)		Yes	
С	30-34	М	3d	Myocarditis Chest pain, fever and ECG changes.		Under investigation	
D	55-59	F	6d	Guillian barre syndrome followed by bells palsy. Proximal weakness in lower limbs		possible	
E	25-29	м	1d	DVT, PE coagulation disorder in family, symptoms started 1 month before vaccination, APLA r/o		No	
F	60-64	F	immediately	TIA /CVA (Normal brain CT)		No	
G	60-64	М	7d	VT during a routine stress test (runner) , released on beta blockers		No	

Serious adverse events following 3rd dose ages 65+ out of 866,208 vaccinees

case	Age group	Sex	Time post dose	Case details	Deceased	Causality	
A	75-79	м	4d	Suspected encephalitis fever and confusion, occurred after I & III dose		Possible	
В	65-69	М	24h	Vitreous hemorrhage Loss of vision in left eye		Possible	
с	70-74	м	24h	CVA h/o Erythromycin sensitivity	v	Under investigation	
D	65-69	м	6d	Septic shock lung transplant recipient	No		
E	80-84	F	2d	Thrombocytopenia, m/p sepsis induced COVID-19 Recovered individual, Multiple comorbidities	No		
F	80-84	м	24h	UTI CRF HTN		No	
G	80-84	F	24h	UTI Multiple co-morbidities		No	
н	85-89	м	2d	UTI Multiple co-morbidities		No	
1	85-89	F	8d	Pneumonia Multiple comorbidities		No	
J	75-79	м	7d	MM, bone marrow transplant, arrhythmia, ablation, Coumadin, sudden death	No		
к	75-79	м	24h	CRF, IHD, CHF, CVA, DM, dementia, PEG	No		
L	85-89	F	12-24h	DM, CVA, Parkinson's, obesity	v	No	

Myocarditis cases and number of vaccinees by age group and sex

Gender	Age group	1st dose (0-21 days after vac.)		2nd dose (0-30 days after vac.)		3rd dose (0-30 days after vac. but in many vaccinees less days so far)		
		Number of vaccinees	Myocarditis cases	Number of vaccinees	Myocarditis cases	Number of vaccinees	Myocarditis cases	
Female	12-15	186,655	0	134,637	1	163		
	16-19	242,497	0	215,725	2	55,107		
	20-24	260,693	1	239,427	6	79,174		
	25-29	244,705	0	226,471	1	74,222		
	30+	2,116,016	3	2,013,329	8	1,273,773	No cases observed	
Male	12-15	174,597	1	126,723	9	142	observed	
	16-19	248,673	3	217,006	33	57,195		
	20-24	272,641	6	248,747	26	85,961		
	25-29	255,426	3	236,913	20	77,325		
	30+	1,973,238	10	1,882,588	32	1,211,543	1	

* All cases reported in Israel Dec, 2020 - Sep 13, 2021

Most young vaccinees received booster only in last two weeks

Summary: Booster dose in Israel was effective and so far had safety profile similar to the other doses

- Booster dose shows ≈10 fold improved protection against confirmed infection and severe COVID19.
- Post-booster efficacy against delta similar to pre-waning efficacy against alpha.
- Booster dose adverse events not more acute than first or second dose.
- Based on the above for ages 60+ (and then 50+), the vaccine safety & effectiveness committees in Israel approved booster dose 5 months after 2nd dose for ages 12+.
- Administration of booster dose helped Israel dampen severe cases in the 4th wave.

