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Abstract  10 

Here we report that COVID-19 hospitalisation rates follow an exponential relationship with 11 
age, doubling for every 16 years of age or equivalently increasing by 4.5% per year of life 12 
(R2=0.98). This mirrors the well studied exponential decline of both thymus volume and T-13 
cell production, which halve every 16 years. COVID-19 can therefore be added to the list of 14 
other diseases with this property, including those caused by MRSA, West Nile virus, 15 
Streptococcus Pneumonia and certain cancers, such as chronic myeloid leukemia and brain 16 
cancers. In addition, incidence of severe disease and mortality due to COVID-19 are both 17 
higher in men, consistent with the degree to which thymic involution (and the decrease in T-18 
cell production with age) is more severe in men compared to women. For under 20s, COVID-19 
19 incidence is remarkably low. A Bayesian analysis of daily hospitalisations, accounting for 20 
contact-based and environmental transmission, indicates that non-adults are the only age 21 
group to deviate significantly from the exponential relationship. Our model fitting suggests 22 
under 20s have 49-75% additional immune protection beyond that predicted by strong 23 
thymus function alone, consistent with increased juvenile cross-immunity from other viruses. 24 
We found no evidence for differences between age groups in susceptibility to overall 25 
infection, or, relative infectiousness to others. The strikingly simple inverse relationship 26 
between COVID-19 risk and thymic T-cell output reported here begs a mechanistic 27 
understanding and suggests that T-cell based therapies may be a promising target.  28 

Introduction 29 

Epidemiological patterns in the incidence of a disease can provide insight into the 30 
mechanisms of disease progression1–4. The degradation of the adaptive immune system with 31 
age is already acknowledged to be a major risk factor for both infectious and non-infectious 32 
diseases and may play a role in understanding the emerging COVID-19 epidemic. Thymus 33 
volume, and the concomitant production of T-cells, decrease exponentially with age with a 34 
half-life of 16 years, or equivalently by 4.5% per year5,6. These changes in the adaptive 35 
immune system lead to less robust immune responses in elderly individuals7. In this paper, 36 
we analyse age and gender trends in national COVID-19 hospitalisation data, in order to 37 
investigate the role of immune function in the ongoing coronavirus pandemic.  38 
 COVID-19 disease progression can be characterised by three consecutive phases of 39 
increasing severity8,9. First, there are mild symptoms such as a dry cough, sore throat and 40 
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fever. After this point the majority of cases will undergo spontaneous regression10. Second, 41 
some patients can develop viral pneumonia, requiring hospitalization8. The third stage, 42 
typically occurring three weeks after the onset of symptoms, is characterised by fibrosis8. 43 
This leads to life threatening symptoms including organ failure, septic shock, acute 44 
respiratory distress syndrome, encephalitis, cerebrovascular events and decimation of the 45 
lymph nodes10–12. COVID-19 patients often exhibit lymphopenia, i.e. extremely low blood T-46 
cell levels, even in the first few days after the onset of symptoms, which is a predictor of 47 
disease progression and mortality13,14. Clinical trials are currently underway to test T-cell 48 
based immunotherapies15 and vaccines that elicit T-cell, as well as antibody, responses16. 49 
There is evidence that T-cells may be more effective than antibodies as exposed, 50 
asymptomatic individuals develop a robust T-cell response without (or before) a measurable 51 
humoral response17. 52 
 The relationship between COVID-19 risk and age has been extensively explored18–20 53 
and age-stratified, contact-based, transmission models have accurately explained various 54 
aspects of the pandemic19–22. In particular, these studies have found that the risk of severe 55 
disease rises with age and is especially low for those under 20. Some studies suggest that 56 
non-adults are as likely to be infected as adults, but then have lower risk of disease 57 
progression22 while others find lower risk of both infection and disease progression in the 58 
under 20s20,21. While these studies have looked at COVID-19 risk and age, here we go further 59 
by relating these trends to thymic involution and T-cell production. This may lead to a 60 
mechanistic understanding of disease progression. 61 

Several diseases have risk profiles that increase exponentially with age, doubling 62 
every 16 years, i.e. risk is proportional to e0.044t, where t is age, or equivalently increasing by 63 
about 4.5% per year4. These diseases are caused by a range of pathogens, from bacterial 64 
(MRSA, S. Pneumonia) to viral (West Nile virus) and even include some cancers (chronic 65 
myeloid leukemia, heart and brain cancers). Since thymus volume and T-cell production both 66 
decrease with age exponentially, halving every 16 years5, disease risk is therefore inversely 67 
proportional to T-cell production for these diseases. Consistently, the gender bias in T-cell 68 
production also roughly matches the gender bias in disease risk, with men having approx. 69 
1.3-1.5 times higher overall cancer and infectious disease risk23–25 and approx. 1.5±0.3 times 70 
lower T-cell production, as measured by T-cell receptor excision circles (TRECs), a proxy for 71 
thymic output4,6. As such, fundamental patterns in disease incidence with respect to both age 72 
and gender can be directly linked to differences in the adaptive immune system.  We 73 
therefore tested to see if COVID-19 follows the same trend. 74 
 75 
Results 76 
 77 
COVID-19 hospitalisation rates 78 
 79 
 While data on confirmed cases can be highly variable and largely influenced by 80 
testing strategies, the data on hospitalisations, which is the focus of this paper, are relatively 81 
more reliable. Incidence of COVID-19 hospitalisations, in a number of countries, consistently 82 
doubles with every 16 years of age (R2=0.98 for top three countries, Fig. 1A). Meanwhile, the 83 
incidence of all confirmed cases (including mild or asymptomatic) appears roughly constant 84 
across adult ages (Fig. S1). One explanation that is consistent with the data is that exposure is 85 
approximately uniform for adult age groups and that after exposure, the probability of 86 
becoming hospitalised is proportional to e0.044t. We will address the age-dependence of 87 
exposure in more detail by accounting for assortative social mixing as well as a range of 88 
additional age-dependent factors in our Bayesian model (see below).  89 
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 There is a gender bias in COVID-19 risk, which increases with disease severity (Fig. 90 
1C). This is similar to other diseases, including cancer, where men have 1.33 times the risk of 91 
hospitalisation and 1.89 times the risk of death23,26. The gender bias in COVID-19 is 92 
remarkably similar with a factor 1.35±0.4 for hospitalisation incidence and 1.9±0.4 for 93 
mortality (mean ± s.d. Fig. 1C). The slope of the logarithm of the COVID-19 mortality curve 94 
is over twice that of the hospitalisation curve, corresponding to an exponential with rate 95 
0.109±0.005 years-1 (Fig. 1B). Another way of thinking about the gender bias would be to say 96 
that for both hospital incidence and mortality, men are effectively ~6 years older than women 97 
in terms of risk. Other risk factors such as BMI can also be viewed similarly to give an 98 
individualised effective “Covid age”27. The increase in mortality with age may also be 99 
explained by comorbidities which increase with age, such as cardiovascular disease, which 100 
rises exponentially28 with a rate of 0.071±0.003 years-1. Since 0.071+0.044=0.115≈0.109, a 101 
simple model where the risk of COVID-19 mortality is proportional to risk of cardiovascular 102 
disease and inversely proportional to T-cell production would have the correct age-103 
dependence. This would suggest that cardiovascular disease is unlikely to be a risk factor for 104 
hospitalisation but could be for subsequent disease progression.  105 
 106 
 107 
 108 

 109 
Fig. 1. (A) For adults, incidence of COVID-19 hospitalisations rises exponentially with age, 110 
doubling with every 16 years of age. See table S3 for a full list of data sources. (B) Data from 111 
Spain on all confirmed cases, hospitalisations and mortality, from a single study early in the 112 
epidemic, shows a gender bias which increases with disease severity. (C) Boxplot showing 113 
male to female ratios for incidence, hospitalisation rates and mortality, across all age groups 114 
with non-zero entries, from the following countries: France, England, Wales and Spain. 115 
 116 
 117 
Bayesian model 118 
 119 
 Similar to other diseases, COVID-19 risk is relatively high for very young children 120 
(e.g. 0.6 cases per 100,000 for ages 0-4 vs. 0.2 cases per 100,000 for ages 5-17 in USA, Fig. 121 
1A). Additionally, older children have a risk lower than expected based on the exponential 122 
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increase with age we have identified (Fig. 1A). This is similar to MRSA and S. Pneumonia 123 
infection, but not West Nile virus (WNV) infection or cancers with similar exponential 124 
behaviour 4. Potential factors underlying the apparent low risk in juveniles include age-125 
dependence in: 1) exposure (e.g. due to heterogeneous social mixing among age groups), 2) 126 
disease progression, 3) infection given exposure, and/or, 4) infectiousness to others. 127 
Throughout this paper we use the term ‘severe infection’ synonymously with hospitalisation 128 
and we categorise all infections as either mild or severe. In a preliminary analysis, we first 129 
incorporated contact matrices into a simple analytically-tractable Susceptible-Infected-130 
Removed (SIR) model to predict the steady state of the age distribution of hospitalisations in 131 
France, with the assumption that the probability of severe disease given infection is 132 
proportional to e0.044t (see supplementary materials, Fig. S3). This model suggested that age 133 
differences in social mixing could, in part, account for the relatively low hospitalisation of 134 
non-adults (Fig. S3). However, the other possible factors in low juvenile COVID-19 135 
hospitalisation were not considered in this preliminary analysis. 136 

To incorporate all relevant factors, and to more rigorously test our main hypothesis, 137 
we conducted a more detailed analysis of age-dependence based on daily hospitalisation, 138 
recovery and death data. We focused on the single country France, for which an unusually 139 
comprehensive age distributed dataset is available19. All cases in the dataset are either 140 
biologically confirmed or present with a computed tomographic image highly suggestive of 141 
SARS-CoV-2 infection, and the dataset includes corrections for reporting delays19. We 142 
formulated an age-structured Bayesian SIR model of infection, partitioning the force of 143 
infection into that arising from contacts with mild and severely infected individuals, weighted 144 
by age-dependent contact matrices, as well as contact-independent (environmental) 145 
transmission. The model fitting exercise focused on inferring a posterior parameter 146 
distribution for the probability of severe disease given infection for each age cohort. In 147 
addition, posterior distributions were inferred for a range of secondary parameters (Table S2, 148 
parameters of the Bayesian analysis), including age-dependent transmissibility and 149 
susceptibility. 150 

Our results reiterate that the probability of severe disease given infection increases 151 
exponentially with age, at a rate that is remarkably well matched by the rate of thymus 152 
decline for all age groups above 20 years (Fig. S4, all adult age groups have 95% credible 153 
intervals including the rate of thymus decline). In order to investigate the nature of juvenile 154 
deviation from this exponential relationship, we reformulated the analysis to allow deviations 155 
from an exponential increase (for the probability of severe disease given infection) for each 156 
age cohort (Fig. 2). The posterior parameter distribution for the exponential rate was found to 157 
match the rate of thymic degradation (95% CI:0.043-0.053 years-1, Fig. 2B). Only the 158 
juvenile age-cohort was found to significantly deviate from the exponential response (Fig. 159 
2C), showing a level of additional protection to severe COVID-19 of between 49-75% (Table 160 
S1). Our sensitivity analysis allowed – within each age cohort – for deviation from uniform 161 
probability of infection given exposure, and, deviation from uniform infectiousness of 162 
infected individuals. For both of these we found that none of the age cohorts deviated 163 
significantly (in all cases 95% credible intervals included zero deviation, Fig. S5), allowing 164 
us to discount these potentially confounding factors. 165 

 166 
 167 
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 168 
Fig. 2. (A) Forward simulation of the French epidemic using the fitted parameters (B-C) 169 
produces a credible interval containing the French hospitalisation data up to day 24 (B) The 170 
95% credible interval for the rate of age dependent exponential growth in hospitalisation 171 
probability includes the rate of thymus degradation (0.044 years-1, yellow diamond). Black 172 
vertical lines show the 2.5th and 97.5th percentiles. (C) The juvenile cohort has additional 173 
significant protection beyond what is predicted by their stronger thymus function (red 174 
interval is separated from the zero deviation line for juveniles only). See supplementary 175 
information section ‘Bayesian modelling’ for full description of methods. 176 

 177 
The low susceptibility to severe disease given infection in non-adults may be due to 178 

cross-protection from other coronaviruses8,29,30, or even non-specific protection from other 179 
respiratory viruses31, which occur more frequently in non-adults compared to adults32. Our 180 
estimate of 49-75% protection ties in with a study which found SARS-Cov-2 reactive 181 
antibodies in approximately 60% of unexposed individuals aged 6-16 and only 6% in 182 
adults33. There is also evidence of unexposed individuals having SARS-CoV-2 reactive 183 
CD4+ T-cells34. Another possible explanation for the low risk in non-adults might come from 184 
some intrinsic feature of the immune system. For example, T-cell homeostasis may be 185 
maintained differently in the under 20 age group5. Intriguingly, the risk of T-lymphoblastic 186 
leukemia is approximately constant for adults but highest for ages 5-20 (see ref.4 Supp. Fig. 187 
5), which may be related to the low disease risk for those ages. 188 
 189 
Discussion  190 
 191 
 Although we have demonstrated a clear relationship between the probability of severe 192 
disease and age, it is possible that the relationship is due, in part, to alternative physical 193 
processes other than T-cell production. The most closely related cell-type to T-cells are B-194 
cells, which develop in the bone marrow. Bone marrow also shrinks with age, but at a rate 195 
that is substantially slower than the thymus35. Furthermore, a mechanism for why the 196 
probability of hospitalisation is inversely proportional to T-cell production is currently 197 
lacking. One possible model features stochastic fluctuations in the number of infected cells 198 
and an immune escape threshold which is proportional to T-cell production4. This model has 199 
the added benefit that it can also explain most of the other (non-exponential) relationships 200 
between risk and age seen in various cancer types4.  201 

Chronic myeloid leukemia (CML) is a type of cancer with an age-dependence 202 
remarkably similar to COVID-19. In both diseases the risk of hospitalisation rises 203 
exponentially, inversely proportional to T-cell production4, with gender bias ratios of 204 
1.35±0.4 for COVID-19 and 1.35±0.3 for CML. The mortality risk profiles are also similar 205 
(exponential rates: 0.109±0.005 years-1 for COVID-19 and 0.103±0.007 years-1 for CML, 206 
gender bias ratios:1.9±0.4 for COVID-19 and 1.8±0.6 for CML, Fig. S2). CML is 207 
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characterised by a single genomic feature, a chromosomal translocation known as the 208 
Philadelphia chromosome. This suggests that the probabilities of Philadelphia chromosome 209 
formation and COVID-19 infection are approximately age-independent, but that the 210 
probabilities of subsequent hospitalisation are T-cell dependent. A good candidate for a 211 
potential mechanism involves the phenomenon that increased antigenic load can lead to T-212 
cell exhaustion, characterised by low effector function and clone-specific depletion36. T-cell 213 
exhaustion is a factor in both cancer and infectious diseases, including COVID-1937,38, where 214 
it has even been shown to be a predictor of mortality39. As T-cell production decreases with 215 
age, this may lead to an increase in the probability for T-cell exhaustion. In support of this 216 
hypothesis, low precursor T-cell numbers have been shown to lead to T-cell exhaustion and 217 
disease progression in a mouse cancer model40. More specifically, we predict a step in 218 
disease progression with a probability exactly inversely proportional to the number of 219 
precursor T-cells. When looking at gender biases for COVID-19 hospitalisation and mortality 220 
(Fig. 1C) we found factors of 1.35 and 1.9 respectively. We can speculate that since 221 
1.352≈1.9, this might be an indication that among the steps of disease progression, there 222 
could be two T-cell dependent steps, one pre-hospitalisation and one post-hospitalisation. The 223 
log-slope of the mortality curve being over twice that of the hospitalisation curve is 224 
consistent with this hypothesis. One feature of post-hospitalisation disease progression is an 225 
IL-6 driven cytokine storm41, which may be related to T-cell dysfunction42. 226 

Here we have shown that risk of COVID-19 hospitalisation rises exponentially with 227 
age, inversely proportional to T-cell production, in a similar way to several other diseases. 228 
Consistently, the gender bias in disease risk also fits this trend. In addition, we found that the 229 
under-20 age group benefits from additional protection from severe disease. We hope that 230 
these findings will be an important clue in understanding the precise mechanisms involved in 231 
disease progression.  232 
 233 
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 364 
 365 
Methods 366 
 367 
 368 
In the ‘Analytical models’ section below we include technical details on the deterministic 369 
model used to compare theory with data in Figure S3. In the ‘Bayesian models’ section below 370 
we include technical details on the statistical model used to generate the results displayed in 371 
Figure 2, S4-S6 and Table S1. 372 
 373 
 374 
 375 
Analytical models  376 
 377 

We consider three models: one with age-independent spreading, one with contact-378 
based spreading and no transmission from those infected with mild symptoms and one with 379 
contact-based spreading where those with mild symptoms are as contagious as those with 380 
severe symptoms. Throughout this paper we use the term ‘severe’ to correspond to 381 
hospitalisations. The first model is a simple model where we assume that transmission and 382 
exposure are age-independent and that the probability of subsequent severe infection is 383 
proportional to e0.044a, where a is age. This model predicts hospitalisation rates to rise as a 384 
pure exponential with exponential rate 0.044 years-1. 385 
 386 

In our contact based models, we assume that risk of coronavirus infection is of the 387 
form 388 
 389 

𝑃(𝑚𝑖𝑙𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) = 𝑃(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒)𝑃(𝑚𝑖𝑙𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑔𝑖𝑣𝑒𝑛	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) 390 
 391 
𝑃(𝑠𝑒𝑟𝑖𝑜𝑢𝑠	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) = 𝑃(𝑚𝑖𝑙𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛)𝑃(𝑠𝑒𝑟𝑖𝑜𝑢𝑠	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑔𝑖𝑣𝑒𝑛	𝑚𝑖𝑙𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) 392 
 393 
and that 𝑃(𝑚𝑖𝑙𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑔𝑖𝑣𝑒𝑛	𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) is age-independent while 394 
𝑃(𝑠𝑒𝑟𝑖𝑜𝑢𝑠	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛	𝑔𝑖𝑣𝑒𝑛	𝑚𝑖𝑙𝑑	𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛) is proportional to e0.044a. We also assume that 395 
𝑃(𝑒𝑥𝑝𝑜𝑠𝑢𝑟𝑒) for someone aged i is proportional to the number of people infected at age j 396 
times the amount of contact between age i and age j (as measured by a contact matrix which 397 
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we will call C). Then the number of infected people can be modelled as a discrete time 398 
Markov process. In what follows, we consider only new cases each time step, which is 399 
equivalent to having one time step being the length of time someone is infectious for. We 400 
also make the approximation that the number of susceptibles is much larger than the number 401 
of infected and recovered/dead. 402 

If individuals with only mild symptoms do not transmit, we can ignore them in our 403 
model. If the number of people severely infected at time t, for each age group, is the vector nt  404 
then we have (up to a constant of proportionality setting how fast the epidemic grows) 405 
 406 

  407 

 𝒏89: 	= 	𝐸. 𝐶. 𝒏8  Eq. 1 
 408 
where C is the contact matrix and E is a diagonal matrix with e0.044a on the diagonal. Since all 409 
elements of C are greater than zero, the Markov chain is strongly connected and therefore, 410 
regardless of initial conditions, nt  will be dominated by the term  411 
 412 

 413 
 𝒏8 ≈ 𝜆8𝒗 Eq. 2 

 414 
 415 

where v is the eigenvector of E.C with the largest eigenvalue, λ. Therefore the normalised 416 
age-distribution of new (and cumulative) severe-symptom cases will converge to v. The 417 
predicted incidence will then be proportional to v divided by the number of people in each 418 
age group, which comes from the population age distribution.  419 

If the mild-symptom individuals are as contagious as the severe-symptom individuals, 420 
we let the number of infected (both mild and severe) individuals at time t, for each age group, 421 
be the vector mt . Then, up to a constant, we have 422 
 423 

 424 
 𝒎𝒕9𝟏 = 	𝑪.𝒎𝒕 Eq. 3 

 425 
where C is the contact matrix. Again, since the Markov chain is strongly connected, 426 
regardless of initial conditions, mt  will be dominated by the term  427 
 428 

 429 
 𝒎𝒕 ≈ 𝝀𝒕𝒗 Eq. 4 

 430 
 431 

where v is now the eigenvector of C with the largest eigenvalue λ. The age-distribution of 432 
severe-symptom cases would then be proportional to E.v. The overall constant is then an 433 
arbitrary fitting parameter, which we fit to the actual incidence data. 434 
 435 
Bayesian models 436 
 437 
In this subsection we describe a model focusing on severely infected individuals. This model 438 
is the basis of the Bayesian analysis, i.e., where the unknown parameters of the statistical 439 
model are fit to data using MCMC methods. In what follows, the unknown, i.e., fitted, 440 
parameters are highlighted in bold. 441 
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 The number of severe infections (hospitalisations) at time t+1 in age group i is 442 
denoted by 𝑆𝑒𝑣89:G. Similarly, 𝑀𝑖𝑙𝑑89:G denotes the number of mild infections (i.e., 443 
infections that are not severe). The number of severe infections that arise on a particular day 444 
in a given age group has the distribution: 445 
 446 
 𝑆𝑒𝑣89:G−𝑆𝑒𝑣8G~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙N𝜇G8, (𝜇G

8)𝝈R Eq. 5 
 447 
where 448 
 449 
 450 
 451 
 452 
 𝜇G8 = 𝑷𝒊𝒔𝒆𝒗𝒆𝒓𝒆ΒG8		, Eq. 6 
 𝑆G8 = 𝐻G − 𝑆𝑒𝑣G8 − 𝑀𝑖𝑙𝑑G8 − 𝑅G8, Eq. 7 

and 453 
 

Β[\ = 𝑆G8](𝜷𝒔𝒄𝐶G`
𝑆𝑒𝑣89a

𝐻 + 𝛃𝒎𝒄𝐶G`
𝑀𝑖𝑙𝑑`89a

𝐻 + 𝜅(𝜷𝒖𝒔𝑆𝑒𝑣89a
`

+ 𝜷𝒖𝒎𝑀𝑖𝑙𝑑`89a))	 

Eq.8 

 454 
In Eq.s 5-8 𝜇G8 is the mean number of new severe infections produced in age group 𝑖 on day 𝑡, 455 
ΒG8 is the force of infection for individuals in age group 𝑖 on day 𝑡 that are susceptible to 456 
infection (denoted 𝑆G8). In addition, 𝑃Gfghgig  represents the probability of severe disease given 457 
infection in age group i, 𝛽fk  and 𝛽lk represent the contact-dependent transmission rates from 458 
severe and mildly infected individuals respectively. 𝛽fm and 𝛽lm represent the contact-459 
independent, i.e., environmental transmission rates from severe and mildly infected 460 
individuals respectively. The parameter 𝜅 is a simple scaling parameter which does not alter 461 
the analysis that is included in order to ensure that the contact-dependent and contact-462 
independent transmission rates are on a comparable scale (i.e., to allow fitting of the ratio of 463 
these terms; 𝜅 = �̅�/𝐻q where  𝜌G is the mean number of contacts that a particular age group, 464 
indexed 𝑖, makes with other age groups,  �̅� is the mean of 𝝆  and H is the mean of 𝑯). 465 
Finally, τ  represents the average delay between the force of infection and the time when a 466 
patient is admitted to hospital, which we take to be 0 days with several other values 467 
(representing 𝜏 > 0) chosen in the sensitivity analysis (see outline points below for further 468 
details). See Table S2 for a complete set of fitted parameter descriptions. Thus we model the 469 
infection process as a negative binomial distribution. This accounts for the variation in count 470 
data associated with the occurrence of individual cases in a given age group on a given day, 471 
while allowing for potential over-dispersion in count data which may arise, for instance, 472 
through the aggregation of French regions, having distinct epidemics. In addition, we model 473 
the occurrence of severely infected individuals in an age group given a set number of daily 474 
infections in that age group, as a binomial distribution (taken together the binomial and 475 
negative binomial distributions result in an overall negative binomial distribution for the 476 
occurrence of severe cases, Eq. 5). 477 
 478 
The following outline points clarify the choices made in formulating the model:  479 

 480 
- In our model, the number of new hospitalisations at time t depends on the number of 481 

people in hospital at time t+τ. Our choice of τ=0 comes from assuming a typical 482 
patient would be admitted to hospital ~10 days 43 after infection and stay in hospital 483 
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for ~10 days 43. Therefore hospital admissions at time t would depend on prevalence 484 
at t-10 and prevalence at t-10 would lead to hospital occupancy anywhere from t-10 to 485 
t+10. Taking the key points from this interval gives 𝜏 = 0, 𝜏 = 5	 and 𝜏 = 10. We 486 
chose to match the simplicity of our approach to the simplicity of our purpose and 487 
hence assumed that τ=0 in our main analysis. For comprehensiveness, however, we 488 
assumed the other key points from the interval in our sensitivity analyses (𝜏 = 5, 𝜏 =489 
10).  490 
 491 

- Note that the model assumes two components of infection: contact-based and contact-492 
independent infection. Contact-based infection is proportional to social mixing 493 
patterns for France recorded in the COMES-F survey (table S3), and is scaled by the 494 
prevalence of severe and mild infection in the age groups that have contact with the 495 
focal age group. Contact-independent infection is proportional to the absolute number 496 
of severe and mild cases in each age group. The contact-independent term reflects the 497 
shedding of virus particles into the environment which may then be acquired as 498 
aerosolised particles or through contact with infected surfaces (and for this reason is 499 
density rather than frequency-dependent). 500 

 501 
- The model is fit to data for consecutive epidemic days 𝑡 = 1. . 𝑇 and for age groups 502 

𝑖 = 1. .8 where the age range for each group is ("0-19","20-29","30-39","40-49","50-503 
59","60-69","70-79",">=80") and where the mean age for each age group is 𝐴G =504 
(9.75, 24.50,34.58, 44.63,54.47, 64.42, 73.79,87.23). The French age distribution 505 
that was used was taken from the socialmixr dataset in R 44. Day 1, the first day of the 506 
dataset, was 01/03/2020. By default  𝑇 = 24 corresponding to the day that we 507 
assumed lockdown effects (which commenced on day 17/03/2020 in France) 508 
percolated through to new hospital admissions (i.e., 17 + ~7=~24 with an assumption 509 
of a lower bound of 7 days for time from exposure to hospital admission). Note that 510 
these factors are varied in the sensitivity analysis (Fig. S6). 511 

 512 
- The model calculates the number of mild cases by dividing the number of severe 513 

cases (i.e., numbers in hospital) by the probability of severe disease for the respective 514 
age groups, i.e., 𝑀𝑖𝑙𝑑89:G = (𝑆𝑒𝑣89:G/𝑃G

fghgig) −	𝑆𝑒𝑣89:G. Note that, as we have 515 
confirmed using independent simulation, this is a good assumption as long as the 516 
epidemic is growing. However, simulations suggest that contrasting removal rates for 517 
different age groups and different infection types (i.e., mild vs severe) can lead to a 518 
lack of robustness in this assumption beyond the epidemic peak. Note that since we fit 519 
up to lockdown the assumption is valid for our purposes. 520 

 521 
Note that the model implementation was performed in RStan 45 using R. The RStan 522 
implementations involved 4 chains, 10,000 iterations (of which 1,000 were warm-up), tree 523 
depth=15 and adapt_delta=1-(10-8). We obtained the dataset for cumulative age-distributed 524 
numbers hospitalised from ‘dailyHospCounts_allReg.csv’ from 19. We calculated a dataset of 525 
removed (recovered/dead) from the files 526 
‘SIVIC_daily_numbers_region_corrected_histo_20200508.csv’ and 527 
‘SIVIC_total_numbers_region_corrected_histo_20200508.csv’ from 19. 528 
 529 
 530 
 531 
Model with deviations 532 
 533 
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The baseline model indicated that an exponential relationship between probability of severe 534 
COVID-19 given infection and age is justified. We therefore extended the baseline model to 535 
include an assumption of an exponential form and a single key deviation. This model is the 536 
basis of Fig. 2 and Table 2 main text (and is reproduced for comparison in Fig. S5A) , i.e., we 537 
allowed each age-cohort to deviate, denoted 𝐷G, in the probability of severe disease given 538 
infection, from the exponential relationship, i.e. 539 

 540 
 541 

 
𝑃Gfghgig =

𝑃�fghgig𝑒l��

𝑒l��
− 𝑫𝒊 

Eq. 9 

 542 
where Ai is the mean age of age group i and 𝐴� is the mean age of the oldest age cohort.  543 
 544 
Model with further deviations (sensitivity analysis) 545 
 546 
In addition we allowed for a further two deviations. These models are the basis of Fig. S5. In 547 
the first of the additional model deviations (Fig. S5B), we allowed each age-cohort to deviate 548 
in the probability of infection given exposure, denoted 𝐸G, from a uniform relationship, i.e. 549 

 550 
 551 
 

Β[\ = 𝑆G8𝑬𝒊](𝛽fk𝐶G`
𝑆𝑒𝑣89a

𝐻 + βlk𝐶G`
𝑀𝑖𝑙𝑑`89a

𝐻 + 𝛽mf𝑆𝑒𝑣89a
`
+ 𝛽ml𝑀𝑖𝑙𝑑`89a)	 

Eq.10 

 552 
 553 

In the second of the additional model deviations (Fig. S5C), we allowed each age-cohort to 554 
deviate in the infectiousness of mildly infected individuals, denoted 𝑇l for mildly infected 555 
cases, and denoted 𝑇f for severely infected cases, from a uniform relationship, i.e. 556 

 557 
 558 

 
Β[\ = 𝑆G8](𝛽fk𝐶G`

𝑆𝑒𝑣89a

𝐻 + βlk𝐶G`(1 − 𝑻𝒋𝒎)
𝑀𝑖𝑙𝑑`89a

𝐻 + 𝛽mf𝑆𝑒𝑣89a
`

+ 𝛽ml𝑻𝒋𝒎𝑀𝑖𝑙𝑑`89a)	 

Eq. 11 

 559 
 560 

For comprehensiveness, we also considered a variant on the third deviation (Fig. S5D), in 561 
which  we allowed each age-cohort to deviate in the infectiousness of both mildly and 562 
severely infected individuals (denoted 𝑇f for severely infected cases), i.e.,  563 
 564 
 565 
 

Β[\ = 𝑆G8](𝛽fk𝐶G`
𝑆𝑒𝑣89a

𝐻 (1 − 𝑻𝒋𝒔) + βlk𝐶G`(1 − 𝑻𝒋𝒎)
𝑀𝑖𝑙𝑑`89a

𝐻
`

+ 𝛽mf𝑆𝑒𝑣89a(1 − 𝑻𝒋𝒔) + 𝛽ml𝑻𝒋𝒎𝑀𝑖𝑙𝑑`89a)	 

Eq.12 

 566 
 567 
Data sources 568 
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 569 
A full list of data sources can be found in Table S3. 570 
 571 
Out of the countries we have gathered age-stratified data for, some have reported 572 
hospitalisation rates, some all confirmed cases and some both. We have included all 573 
hospitalisation data we have collected and only excluded data on all confirmed cases for 574 
Italy, since that report came from early in the outbreak, when most, but not all, cases were 575 
hospitalisations, therefore giving an exponential relationship with a shallow slope.  576 
 577 
For Fig. 1C we used hospitalisation rates and mortality for each age group with non-zero 578 
entries for both males and females. We used data from the following countries: France 579 
(hospitalisations), England and Wales (all confirmed cases and mortality), England (CHESS 580 
program, hospitalisations) and Spain (all confirmed cases, hospitalisations and mortality).  581 
 582 
For Fig. S3 we used pre and post lockdown contact matrices from 19 which are filtered 583 
versions of the contact matrices from socialmixr 44. 584 
 585 
For the rate of thymus decline, we used the estimate from5, which quotes a half-life of 15.7 586 
years, corresponding to an exponential with rate 0.044 years-1 or equivalently a rate of 4.5% 587 
per year. We used these same numbers when describing the increase in disease risk with age.  588 
 589 
We calculated an R2 value from the hospitalisation data by focusing on the datasets with the 590 
most detailed age-stratification (France, Spain and Denmark) and the age groups with most 591 
cases (ages 50-90). Fitting a linear model to the log of the hospitalisation rates gave an 592 
exponential rate of 0.046 years-1, or equivalently a rate of 4.7% per year with a 95% CI of 593 
4.2-5.2% per year, leading to a 95% CI for the doubling time of 14-17 years. We then fit a 594 
linear model with a fixed slope of 0.044 years-1, to match the thymic involution timescale, 595 
and calculated an R2 value of 0.98.  596 
 597 
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 605 
 606 

 607 
Extended Data Fig. S1. Incidence of all confirmed cases is approximately constant with age 608 
for adults and lower in non-adults. 609 
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 611 

 612 
Extended Data Fig. S2. Hospitalisation and mortality rates for CML follow similar trends to 613 
COVID-19.  614 
 615 
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 618 
 619 
 620 

 621 
  622 

 623 
Extended Data Fig. S3. (A) Graphical abstract showing the rational for the analytical 624 
Markov-chain model (thymus volume data from ref.5). If exposure to COVID-19 is age-625 
independent, then a simple model based on immune system declining accurately predicts risk 626 
profiles for adults. In this model, the probability of becoming infected is uniform with age 627 
and the probability of developing severe symptoms increases exponentially, doubling every 628 
16 years. Alternatively, if the spread of COVID-19 is proportional to contact, as estimated by 629 
a contact matrix, then an analytical model can predict similar behaviour for adults and lower 630 
risk for non-adults, but only if there is no transmission from mild cases (B).  631 
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 634 

 635 
Extended Data Fig. S4. Bayesian analysis of French COVID19 hospitalisation data: the 636 
probability that individuals of a given age cohort are hospitalised, given infection, increases 637 
exponentially with age. When the probability of hospitalisation given infection was allowed 638 
to vary independently for each age cohort, the posterior probabilities of hospitalisation (95% 639 
credible intervals in black, with filled circles for mean posterior values) were found to 640 
increase at a rate corresponding to thymus degradation for cohorts over the age of 20 (green 641 
dashed line) (black dots).  642 
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 645 

 646 
 647 

Extended Data Fig. S5. Low COVID-19 hospitalisation among juveniles is associated with 648 
additional intrinsic defence beyond strong thymus function instead of age-specific differences 649 
in several alternative processes. The likelihood of severe disease increases exponentially with 650 
age at a rate matched by thymus degradation, but juveniles deviated significantly from this 651 
pattern (A). None of the deviations for the following processes (which may also be 652 
explanations for low juvenile severe disease) were significant: age-specific deviations in the 653 
probability of infection given exposure (B, blue intervals), or in the infectiousness of mildly 654 
infected cases (C, red intervals), or in the infectiousness of mildly and severely infected cases 655 
(D, red and purple intervals respectively). The line depicting zero deviation (black, bold, 656 
horizontal) passes through each of the credible intervals with the sole exception of the 657 
deviation from exponential probability of severe disease for the juvenile age group. 658 
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 660 

 661 

 662 
 663 

Extended Data Fig. S6. Sensitivity analysis to test the assumptions of the Bayesian analysis 664 
of French COVID19 hospitalisation data. Bayesian 95% credible intervals for the rate 665 
parameter in the exponential dependence of probability of severe disease. Baseline represents 666 
the model in Fig. 2. Baseline+deviation#2 represents the additional inclusion of age-specific 667 
deviations from uniform probability of infection given exposure. Baseline+deviation#3 668 
represents the additional inclusion of age-specific deviations from uniform infectiousness of 669 
mild cases. Baseline+deviation#4 represents the additional inclusion of age-specific 670 
deviations from uniform infectiousness of mild cases and severe cases. Baseline+1 days data 671 
represents the extension of the timeseries fit to the model by 1 further day (i.e. baseline 672 
model run with 25 days data). Baseline-2 days data represents the truncation of the timeseries 673 
fit to the model by 2 days (i.e. baseline model run with 22 days data). Baseline with 5 day 674 
fwd delay (and similarly with 10 day fwd delay) represents the baseline model with the rate 675 
of occurrence of hospital admissions at time 𝑡 depending on the numbers hospitalised at time 676 
𝑡 + 5 (and similarly depending on the numbers hospitalised at time 𝑡 + 10). 677 
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 679 

 680 

 681 
 682 

Extended Data Table S1. Bayesian 95% credible intervals for epidemiological parameters 683 
from French COVID19 hospitalisation data.  684 

Epidemiological 
parameter 

Mean 2.5% (lr 95% 
threshold) 

97.5% (upr 95% 
threshold) 

𝜷𝒔𝒄/𝜷𝒎𝒄 14.89 0.04 45.11 
𝜷𝒔𝒖/𝜷𝒎𝒖 0.38 0.01 1.60 
𝜷𝒔𝒄/𝜷𝒔𝒖 9.28 0.02  38.84 
𝜷𝒎𝒄/𝜷𝒎𝒖 0.256 0.007 0.988 
𝑷�𝟖𝟎𝒚𝒔𝒆𝒗𝒆𝒓𝒆  0.781 0.391 0.992 

Additional juvenile 
protection 

63.4% 48.9% 75% 
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 687 
Extended Data Table S2. Parameter definitions, and prior distributions, for the Bayesian 688 
analysis. All prior distributions were chosen to be non-informative. Posterior parameter 689 
distributions were obtained using Hamiltonian Monte Carlo, RStan version 2.19.3 45, R 690 
version 3.6.3. 691 

 Parameters to be fitted  
𝑚 Probability of severe disease given infection, age coefficient ~ gamma(1,20) 
𝛽fk Contact-based transmission rate from severely infecteds ~ gamma(1,20) 
βlk Contact-based transmission rate from mildly infecteds ~ gamma(1,20) 
𝛽fm Contact independent transmission rate from severely 

infecteds 
~ gamma(1,20) 

𝛽lm Contact independent transmission rate from mildly infecteds ~ gamma(1,20) 
(𝑃Gfghgig)�: Inverse of probability of severe disease given infection, age 

group i 
~ cauchy(0, 1) 

𝜎�: Inverse of negative binomial dispersion exponent ~ normal(2,0.5) 
 Parameters to be fitted, model with deviations  
𝑃�fghgig Prob. of severe disease given infection, for oldest age group 

𝑖 = 8   
~ cauchy(0, 1) 

𝐷G Deviation from exponential prob. of severe disease given 
infection, age group i 

~ normal(0,0.01) 

𝐸G Deviation from uniform prob. of infection given exposure, age 
group i 

~ normal(0,0.01) 

𝑇  Deviation from uniform infectiousness of infecteds, age group 
i 

~ normal(0,0.01) 

 Data variables  
𝐻G Population size, age group i, France pre-existing data 
𝑆𝑒𝑣G8 #Hospitalised COVID-19 patients, age group i, France pre-existing data 
𝑀𝑖𝑙𝑑G8 #Infected with COVID-19 and not hospitalised, age group i, 

France 
Calculated from 
parameter fits 

𝑅G8 #Removed, i.e. dead or released, age group I, France pre-existing data 
𝐶G` #Contacts with age group j, age group i, France pre-existing data 

 692 
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Extended Data Table S3. List of data sources for COVID-19 hospitalisations, 694 
cardiovascular disease and CML.  695 

France (daily data) https://zenodo.org/record/3889894 
France 
(cumulative)  

https://www.data.gouv.fr/fr/datasets/donnees-hospitalieres-relatives-
a-lepidemie-de-covid-
19/?fbclid=IwAR0JUQuhfHhu8OQsX7xo3FDgl-cWYiiDO7z-
oCPnANuXUQIax1WqZyTr8FY 

Spain https://www.mscbs.gob.es/profesionales/saludPublica/ccayes/alertas
Actual/nCov-China/documentos/Actualizacion_70_COVID-19.pdf 

Denmark https://files.ssi.dk/COVID19-overvaagningsrapport-08042020-zm92 
USA (accessed 
April 2020) 

https://gis.cdc.gov/grasp/COVIDNet/COVID19_3.html 

Canada (accessed 
June 2020) 

https://health-infobase.canada.ca/covid-19/epidemiological-
summary-covid-19-cases.html 

England (CHESS 
program) 

https://assets.publishing.service.gov.uk/government/uploads/system/
uploads/attachment_data/file/880925/COVID19_Epidemiological_S
ummary_w17.pdf 

England and Wales https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeath
sandmarriages/deaths/datasets/weeklyprovisionalfiguresondeathsregi
steredinenglandandwales 

Switzerland 
(accessed April 
2020) 

https://www.bag.admin.ch/dam/bag/de/dokumente/mt/k-und-
i/aktuelle-ausbrueche-pandemien/2019-nCoV/covid-19-
datengrundlage-
lagebericht.xlsx.download.xlsx/200325_Datengrundlage_Grafiken_
COVID-19-Bericht.xlsx 

China http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-
fea8db1a8f51 

South Korea 
(accessed April 
2020) 

http://ncov.mohw.go.kr/bdBoardList_Real.do?brdId=1&brdGubun=
11&ncvContSeq=&contSeq=&board_id=&gubun= 

Austria (accessed 
April 2020) 

https://info.gesundheitsministerium.at/ 

Romania (accessed 
April 2020) 

https://datelazi.ro/ 

Norway https://www.fhi.no/contentassets/e110607a67df46cbba8e30a443264
a73/vedlegg/tidligere-dagsrapporter/2020.06.10-dagsrapport-norge-
covid-19.pdf 

Japan (accessed 
April 2020) 

https://toyokeizai.net/sp/visual/tko/covid19/ 

Australia - 
Cardiovascular 
disease 

https://www.aihw.gov.au/reports/heart-stroke-vascular-
diseases/cardiovascular-health-compendium/data 

UK - CML https://www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/leukaemia-cml 
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