
Reconstruction of the full transmission 
dynamics of COVID-19 in Wuhan

Xingjie Hao, Shanshan Cheng, Degang Wu, Tangchun Wu, Xihong Lin & Chaolong Wang

This is a PDF file of a peer-reviewed paper that has been accepted for publication. 
Although unedited, the content has been subjected to preliminary formatting. 
Nature is providing this early version of the typeset paper as a service to our authors 
and readers. The text and figures will undergo copyediting and a proof review before 
the paper is published in its final form. Please note that during the production 
process errors may be discovered which could affect the content, and all legal 
disclaimers apply.

Received: 14 April 2020

Accepted: 10 July 2020

Accelerated Article Preview Published 
online 16 July 2020

Cite this article as: Hao, X. et al.  
Reconstruction of the full transmission 
dynamics of COVID-19 in Wuhan. Nature  
https://doi.org/10.1038/s41586-020-2554-8 
(2020).

https://doi.org/10.1038/s41586-020-2554-8

Nature  |  www.nature.com

Accelerated Article Preview

ACCELE
RATED  

ARTIC
LE  

PREVIE
W  

https://doi.org/10.1038/s41586-020-2554-8


Nature  |  www.nature.com  |  1

Article

Reconstruction of the full transmission 
dynamics of COVID-19 in Wuhan

Xingjie Hao1,2,6, Shanshan Cheng1,2,6, Degang Wu1,2,6, Tangchun Wu1,3,4 ✉, Xihong Lin5 ✉ & 
Chaolong Wang1,2,4 ✉

As countries in the world review interventions for containing the COVID-19 pandemic, 
important lessons can be drawn by studying the full transmission dynamics of 
SARS-CoV-2 in Wuhan, China, where vigorous non-pharmaceutical interventions have 
suppressed the local COVID-19 outbreak1. Here, we use a modelling approach to 
reconstruct the full-spectrum dynamics of COVID-19 between January 1, 2020 and 
March 8, 2020 across five periods marked by events and interventions based on 32,583 
laboratory-confirmed cases1. Accounting for presymptomatic infectiousness2, 
time-varying ascertainment rates, transmission rates and population movements3, we 
identify two key features of the outbreak: high covertness and high transmissibility. 
We estimate 87% (lower bound 53%) of the infections before March 8 were 
unascertained, potentially including asymptomatic and mild-symptomatic cases; and 
a basic reproduction number R0 of 3.54 (95% credible interval [CrI]: 3.40-3.67) in the 
early outbreak, much higher than for SARS and MERS4,5. We observe that 
multi-pronged interventions had considerable positive effects on controlling the 
outbreak, decreasing the reproduction number to 0.28 (0.23-0.33) and by projection 
reducing the total infections in Wuhan by 96.0% as of March 8. We furthermore 
explore the probability of resurgence following lifting of all interventions after 14 days 
of no ascertained infections, estimating it at 0.32 and 0.06 based on models with 87% 
and 53% unascertained infections, respectively, highlighting the risk posed by 
unascertained cases in changing intervention strategies. These results provide 
important implications for continuing surveillance and interventions to eventually 
contain COVID-19 outbreaks.

The coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 was 
detected in Wuhan, China, in December 20196. The high population 
density together with the increased social activities before the Chinese 
New Year catalyzed the outbreak, of which the spread was expedited 
by the massive human movement during the holiday travel season 
Chunyun from January 10, 20203. Shortly after the confirmation of 
human-to-human transmission, the Chinese authorities implemented 
the unprecedented cordons sanitaire of Wuhan on January 23 to contain 
the geographic spread, followed by a series of non-pharmaceutical 
interventions to reduce virus transmission, including suspension of 
all intra- and inter-city transportation, compulsory mask wearing in 
public places, cancelation of social gatherings, and home quarantine 
of mild-symptomatic patients1. From February 2, strict stay-at-home 
policy for all residents, centralized isolation of all patients, and  
centralized quarantine of suspected cases and close contacts were 
implemented to stop household and community transmission. Further-
more, a city-wide door-to-door universal symptom survey was carried 

out during February 17-19 by designated community workers to identify 
previously undetected symptomatic cases. These drastic interven-
tions, together with the improved medical resources and healthcare 
manpower from all over the country, have effectively crushed the epi-
demic curve and reduced the attack rate in Wuhan, shedding light on 
the global efforts to control the COVID-19 outbreak1.

Recent studies have revealed important transmission features of 
COVID-19, including infectiousness of asymptomatic cases7–10 and 
presymptomatic cases2,11,12. Furthermore, the number of ascertained 
cases was much smaller than that estimated using international cases 
exported from Wuhan prior to the travel suspension3,13,14, implying a 
substantial number of unascertained cases. Using reported cases from 
375 cities in China, a modelling study concluded that a sizeable num-
ber of unascertained cases, despite having lower transmissibility, had 
facilitated the rapid spreading of COVID-1915. In addition, accounting 
for unascertained cases has refined the estimation of case fatality risk 
of COVID-1916. Modelling both ascertained and unascertained cases is 
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important in facilitating interpretation of transmission dynamics and 
epidemic trajectories.

Based on comprehensive epidemiological data from Wuhan1, we 
delineated the full dynamics of COVID-19 in the epicenter by extending 
the susceptible-exposed-infectious-recovered (SEIR) model to a new 
model named SAPHIRE (Fig. 1, Methods, Extended Data Tables 1-2). We 
modelled the outbreak from January 1, 2020 across five time periods 
based on key events and interventions: January 1 to 9 (before Chunyun), 
January 10 to 22 (Chunyun), January 23 to February 1 (cordons sanitaire), 
February 2 to 16 (centralized isolation and quarantine), and February 17 
to March 8 (community screening). We assumed a constant population 
size of 10 million with equal numbers of daily inbound and outbound 
travelers (500,000 before Chunyun, 800,000 during Chunyun, and 0 
after cordons sanitaire)3. Furthermore, we assumed that the transmis-
sion rate and the ascertainment rate did not change in the first two 
periods, because few interventions were implemented before January 
23, while these rates were allowed to vary in later periods to reflect 
different intervention strengths. We estimated these rates across peri-
ods by Markov Chain Monte Carlo (MCMC) and further converted the 
transmission rate into the effective reproduction number Re (Methods).

We first simulated epidemic curves with two periods to validate our 
parameter estimation procedure (Methods, Extended Data Fig. 1). 
Our method could accurately estimate Re and the ascertainment rates 
when the model was correctly specified, and was robust to misspeci-
fication of the duration from symptom onset to isolation and of the 
relative transmissibility of unascertained cases to ascertained cases. 
As expected, estimates of Re were positively correlated with the speci-
fied latent and infectious periods, while the estimated ascertainment 
rates were positively correlated with the specified ascertainment rate 
in the initial state.

Using confirmed cases exported from Wuhan to Singapore (Extended 
Data Table 3), we conservatively estimated the ascertainment rate dur-
ing the early outbreak in Wuhan to be 0.23 (95% confidence interval 
[CI]: 0.14-0.42) (Methods). We then fit the daily incidences in Wuhan 
from January 1 to February 29, assuming the initial ascertainment rate 
was 0.23, and predicted the trend from March 1 to 8 (Methods). Our 
model fit the observed data well, except for the outlier on February 
1, which might be due to approximate-date records of many patients 
admitted to the field hospitals set up after February 1 (Fig. 2a). After a 
series of multi-faceted public health interventions, Re decreased from 
3.54 (95% CrI: 3.40-3.67) and 3.32 (3.19-3.44) in the first two periods to 
1.18 (1.11-1.25), 0.51 (0.47-0.54) and 0.28 (0.23-0.33) in the later three 
periods, respectively (Fig. 2b, Extended Data Tables 4-5). We estimated 
the cumulative number of infections, including unascertained cases, till 
March 8 to be 258,728 (204,783-320,145) if the trend of the fourth period 
was assumed (Fig. 2c), or 818,724 (599,111-1,096,850) if the trend of the 
third period was assumed (Fig. 2d), or 6,302,694 (6,275,508-6,327,520) 
if the trend of the second period was assumed (Fig. 2e), in comparison 
to the estimated total infections of 249,187 (198,412-307,062) by fitting 
data from all five periods (Fig. 2a). Correspondingly, these numbers 
translate into 3.7%, 69.6%, and 96.0% reduction of infections by the 
measures taken in the fifth period, the fourth and the fifth periods 
combined, and the last three periods combined, respectively.

Strikingly, we estimated low ascertainment rates throughout, which 
were 0.15 (0.13-0.17) for the first two periods, and 0.14 (0.11-0.17), 
0.10 (0.08-0.12), and 0.16 (0.13-0.21) for the remaining three periods, 
respectively (Extended Data Table 6). Even with the universal com-
munity symptom screening implemented from February 17 to 19, the 
ascertainment rate was only raised to 0.16. Based on the fitted model 
using data from January 1 to February 29, we projected the cumulative 
number of ascertained cases to be 32,577 (30,216-34,986) by March 
8, close to the reported number of 32,583. This was equivalent to an 
overall ascertainment rate of 0.13 (0.11-0.16) given the estimated total 
infections of 249,187 (198,412-307,062). The model also projected that 
the number of daily active infections, including both ascertained and 

unascertained, peaked at 55,879 (43,582-69,571) on February 2 and 
dropped afterwards to 701 (436-1,043) on March 8 (Fig. 2f). If the trend 
remained unchanged, the number of ascertained infections would 
first become zero on March 27 (95% CrI: March 20 to April 5), while the 
clearance of all infections would occur on April 21 (April 8 to May 12) 
(Extended Data Table 7). The first day of zero ascertained case in Wuhan 
was reported on March 18, indicating enhanced interventions in March.

By stochastic simulations, we investigated the implications of  
unascertained cases for continuing surveillance and interventions 
(Methods)17. Because of the latent, presymptomatic, and unascertained 
cases, the source of infection would not be completely cleared shortly 
after the first day of zero ascertained cases. We found that if control 
measures were lifted 14 days after the first day of zero ascertained 
cases, the probability of resurgence could be as high as 0.97, and the 
surge was predicted to occur on day 34 (95% CrI: 27-47) after lifting 
controls (Fig. 3). If we were to impose a more stringent criterion of 
lifting controls after observing no ascertained cases in a consecutive 
period of 14 days, the probability of resurgence would drop to 0.32, 
with possible resurgence delayed to day 42 (95% CrI: 33-55) after lifting 
controls (Fig. 3). These results highlighted the risk of ignoring unas-
certained cases in switching intervention strategies, despite using an 
over-simplified model.

We performed a series of sensitivity analyses to test the robustness 
of our results by smoothing the outlier data point on February 1, vary-
ing lengths of latent and infectious periods, duration from symptom 
onset to isolation, ratio of transmissibility of unascertained cases 
to ascertained cases, and the initial ascertainment rate (Extended 
Data Tables 4-7, Supplementary Information). Our major findings of 
remarkable decrease in Re after interventions and the existence of a 
substantial number of unascertained cases were robust. Consistent 
with simulations, the estimated ascertainment rates were positively 
correlated with the specified initial ascertainment rate. When we speci-
fied the initial ascertainment rate as 0.14 or 0.42, the estimated overall 
ascertainment rate would be 0.08 (0.07-0.10) and 0.23 (0.16-0.28), 
respectively. If we assumed an extreme scenario with no unascertained 
cases in the early outbreak (model S8; Supplementary Information), 
the estimated ascertainment rate would be 0.47 (0.39-0.58) overall, 
which would represent an upper bound of the ascertainment rate. In 
this model, because of the higher ascertainment rate compared to the 
main analysis, we estimated a lower probability of resurgence of 0.06 
when lifting controls after 14 days of no ascertained cases, and the 
resurgence was expected to occur on day 38 (95% CrI: 29-52) after lifting 
controls (Fig. 3). A simplified model assuming complete ascertainment 
anytime performed significantly worse than the full model (Extended 
Data Table 4, Supplementary Information).

Understanding the proportion of unascertained cases and their 
transmissibility is critical for prioritization of the surveillance and 
control measures17. Our finding of a large fraction of unascertained 
cases, despite the strong surveillance in Wuhan, indicated the existence 
of many asymptomatic or mild-symptomatic cases. It was estimated 
that asymptomatic cases accounted for 18% of the infections onboard 
the Diamond Princess Cruise ship8 and 31% of the infected Japanese 
evacuated from Wuhan9. In addition, 29 of the 33 (88%) infected preg-
nant women were asymptomatic by universal screening of 210 women 
admitted for delivery between March 22 and April 4 in New York City10. 
Several reports also highlighted the difficulty in detecting COVID-
19 cases: the detection capacity varied from 11% in low surveillance 
countries to 40% in high surveillance countries18,19; modelling of the 
epidemics outside of Wuhan suggested that the ascertainment rate was 
24.4% in China (excluding Hubei province)14 and 14% in Wuhan prior to 
travel ban15. Consistent with these studies and the emerging serologic 
studies showing much higher seroprevalence than the reported case 
prevalence20–22, our analyses of data from Wuhan indicated an overall 
ascertainment rate between 8% and 23% (Extended Data Table 6, exclud-
ing the extreme scenario of model S8).
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Our Re estimate of 3.54 (3.40-3.67) before any interventions was at the 
higher end of the range of the estimated basic reproduction number 
R0 from other studies using early epidemic data from Wuhan6,23. The 
discrepancy might be due to modelling of unascertained cases, more 
complete case records in our analysis, and different time periods ana-
lyzed. If we modelled from the first COVID-19 case reported in Wuhan, 
we would estimate a lower Re of 3.38 (3.28-3.48) before interventions 
(Extended Data Fig. 2), which is still much higher than those for SARS 
and MERS4,5.

Our modelling study delineated the full-spectrum dynamics of the 
COVID-19 outbreak in Wuhan, and highlighted two key features of the 
outbreak: high covertness and high transmissibility. These two features 
synergistically propelled the COVID-19 pandemic, imposing grand 
challenges to control the outbreak. Still, lessons from Wuhan have 
demonstrated the effectiveness of vigorous and multifaceted contain-
ment efforts. In particular, despite relatively low ascertainment rates 
due to undetected symptoms of many cases, the outbreak could be 
controlled by extensive interventions to block the transmission from 
unascertained cases, such as wearing face masks, social distancing, 
and quarantining close contacts1.

Further investigations, such as survey of the seroprevalence of 
SARS-CoV-2 specific antibodies, are needed to confirm our model 
estimates given the limitations discussed below. First, due to the delay 
in laboratory tests, we might have missed some cases and therefore 
underestimated the ascertainment rate, especially for the last period. 
Second, we excluded clinically diagnosed cases without laboratory 
confirmation to reduce false positive diagnoses, which, however, 
would lead to underestimation of ascertainment rates, especially 
for the third and fourth periods when many clinically diagnosed 
cases were reported1. The variation in the estimated ascertainment 
rates across periods reflected a combined effect of the evolving sur-
veillance, interventions, medical resources, and case definitions 
across time periods1,24. Third, our model assumed homogeneous 
transmission within the population while ignoring heterogeneity 
between groups by sex, age, geographic regions and socioeconomic 
status25. Furthermore, individual variation in infectiousness, such as 
superspreading events26, is known to result in a higher probability 
of stochastic extinction given a fixed population Re

27. Therefore, we 
might have overestimated the probability of resurgence. Finally, we 
could not evaluate the impact of individual interventions based on the 
epidemic curve from a single city, because many interventions were 
applied simultaneously. Future work by modelling heterogeneous 
transmission between different groups and joint analysis with data 
from other cities will lead to deeper insights into the effectiveness 
of different control strategies28,29.
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Fig. 1 | Illustration of the SAPHIRE model. We extended the classic SEIR  
model to include seven compartments, namely S (susceptible), E (exposed),  
P (presymptomatic infectious), I (ascertained infectious), A (unascertained 
infectious), H (isolated), and R (removed). (a) Relationship between different 
compartments. Two parameters of interests are r (ascertainment rate) and  
b (transmission rate), which are assumed to be varying across time periods.  

(b) Schematic disease course of a symptomatic case. In this model, the 
unascertained compartment A includes asymptomatic and some 
mild-symptomatic cases who were not detected. While there is no 
presymptomatic phase for asymptomatic cases, we treated asymptomatic as a 
special case of mild-symptomatic and modeled both with a “presymptomatic” 
phase for simplicity.
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Fig. 2 | Modelling the COVID-19 epidemic in Wuhan. Parameters were 
estimated by fitting data from January 1 to February 29. (a) Prediction using 
parameters from period 5 (February 17 to 29). (b) Distribution of Re estimates 
from 10,000 MCMC samples. In each violin plot, the white dot represents the 
median, the thick bar represents the interquartile range (IQR), and the thin  
bar represents the minimum and the maximum. The mean and the 95% CrI  

(in parentheses) are labelled below or above. (c) Prediction using parameters 
from period 4 (February 2 to 16). (d) Prediction using parameters from period 3 
(January 23 to February 1). (e) Prediction using parameters from period 2 
(January 10 to 22). The shaded areas in (a, c, d and e) are 95% CrI and the colored 
points are the mean values based on 10,000 MCMC samples. (f) Estimated 
number of active infectious cases in Wuhan from January 1 to March 8.
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Fig. 3 | Risk of resurgence after lifting controls. We considered the main 
model (M) and the sensitivity analysis S8 (Methods). In model M, we assumed 
the initial ascertainment rate r0=0.23, and thus had an overall ascertainment 
rate of 0.13. In model S8, we assumed no unascertained cases initially and thus 
had an overall ascertainment rate of 0.47. For each model, we simulated 
epidemic curves based on 10,000 sets of parameters from MCMC, assuming 
transmission rate b, ascertainment rate r, and population movement n were 
resumed to values before Chunyun after lifting controls. A resurgence was 
defined by the time of reaching over 100 active ascertained infections.  

(a) Illustration of a simulated curve under the main model with control 
measures lifted 14 days after the first day of no ascertained cases. The inserted 
panel is a zoom-in plot from March 16 to May 28. (b) Probability of resurgence  
if control measures were lifted t days after the first day of no ascertained  
cases, or after observing zero ascertained cases for t days consecutively.  
(c) Expectation of time to resurgence conditional on the occurrence of 
resurgence. We grouped the last 10 days (t=21 to 30) to calculate the expected 
time to resurgence because of their low probability of resurgence.
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Methods

Data of COVID-19 cases in Wuhan
We analyzed the daily incidence data of COVID-19 presented in Figure 1 
of Pan et al1. Briefly, information of COVID-19 cases from December 
8, 2019 till March 8, 2020 were extracted from the municipal Noti-
fiable Disease Report System on March 9, 2020. Date of symptom 
onset (the self-reported date of developing symptoms such as fever, 
cough, or other respiratory symptoms) and date of confirmed diag-
nosis were collected. For the consistency of case definition through-
out the periods, we only included 32,583 laboratory-confirmed 
cases who tested positive for SARS-CoV-2 by the real-time reverse- 
transcription-polymerase-chain-reaction (RT-PCR) assay or high- 
throughput sequencing of nasal and pharyngeal swab specimens.  
Software SAS (version 9.4) was used in data collection.

Estimation of initial ascertainment rate using cases exported to 
Singapore
As of May 10, 2020, a total of 24 confirmed COVID-19 cases in Singa-
pore were reported to be imported from China, among which 16 were 
imported from Wuhan before the cordons sanitaire on January 23 and 
the first case arrived in Singapore on January 18 (Extended Data Table 3). 
Based on VariFlight Data (https://data.variflight.com/en/), the total 
number of passengers from Wuhan to Singapore between January 18 
and 23, 2020 was 2,722. Therefore, the cumulative infection rate among 
the passengers was 0.59% (=16/2722, 95% CI: 0.30-0.88%). These cases 
had symptom onset between January 21 and 30, 2020. In Wuhan, a total 
of 12,433 confirmed cases were reported to have symptom onset in the 
same period, equivalent to a cumulative infection rate of 0.124% (95% 
CI: 0.122-0.126%) by assuming a population size of 10 million for Wuhan. 
By further assuming complete ascertainment of early cases in Singa-
pore, which is well known for its excellent surveillance strength18,19, the 
ascertainment rate during the early outbreak in Wuhan was estimated 
to be 0.23 (95% CI: 0.14–0.42), corresponding to 0.77 (95% CI: 0.58-0.86) 
of the infections being unascertained. This represents a conservative 
estimate for two reasons: (1) the assumption of perfect ascertainment in 
Singapore ignored potential asymptomatic cases8,9; and (2) the number 
of imported cases with onset between January 21 and 30 was censored 
due to suspension of flights after Wuhan lockdown. Without direct 
information to estimate the initial ascertainment rate before January 
1, 2020, we used these results based on Singapore data to set the initial 
value and the prior distribution of ascertainment rates in our model, 
and performed sensitivity analyses under various assumptions.

The SAPHIRE model
We extended the classic susceptible-exposed-infectious-recovered 
(SEIR) model to a SAPHIRE model (Fig. 1, Extended Data Table 1), which 
incorporates three additional compartments to account for presymp-
tomatic infectiousness (P), unascertained cases (A), and case isolation 
in the hospital (H). We chose to analyze data from January 1, 2020, when 
the Huanan Seafood Market was disinfected, and thus did not model 
the zoonotic force of infection3. We assumed a constant population 
size N=10,000,000 with equal number of daily inbound and outbound 
travelers n, where n=500,000 for January 1 to 9, 800,000 for January 10 
to 22 due to Chunyun, and 0 after cordons sanitaire from January 233. 
We divided the population into S susceptible, E exposed, P presympto-
matic infectious, A unascertained infectious, I ascertained infectious, 
H isolated, and R removed individuals. We introduced an isolated com-
partment H because ascertained cases would have shorter effective 
infectious period due to isolation, especially when medical resources 
were improved1. Dynamics of these compartments across time t were 
described by the following set of ordinary differential equations:
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where b was the transmission rate for ascertained cases, defined as the 
number of individuals that an ascertained case can infect per day; α was 
the ratio of the transmission rate of unascertained over ascertained 
cases; r was ascertainment rate; De was the latent period; Dp was the 
presymptomatic infectious period; Di was the symptomatic infectious 
period; Dq was the duration from illness onset to isolation; and Dh was 
the isolation period in hospital. The effective reproduction number 
Re could be computed as

R αb D
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where the three terms represent infections contributed by presymp-
tomatic, unascertained, and ascertained cases, respectively. We 
adjusted the infectious periods of each type of cases by taking popula-
tion movement ( )n

N  and isolation (Dq
−1) into account.

Parameter settings and initial states
Parameter settings for the main analysis were summarized in Extended 
Data Table 2. We set α=0.55 according to Li et al.15, assuming lower 
transmissibility for unascertained cases. Compartment P contains 
both ascertained and unascertained cases at the presymptomatic 
phase. We set the transmissibility of P to be the same as unascertained 
cases because it has been reported that the majority of the cases were 
unascertained15. We assumed an incubation period of 5.2 days  
and a presymptomatic infectious period of Dp=2.3 days2,6. Thus the 
latent period was De=5.2-2.3=2.9 days. Because presymptomatic infec-
tiousness was estimated to account for 44% of the total infections  
of ascertained cases2, we set the mean of total infectious period as 
D D( + ) = = 5.2p i

D

0.44
p  days assuming constant infectiousness across 

presymptomatic and symptomatic phases for the ascertained cases12, 
thus the mean symptomatic infectious period was Di=2.9 days. We set 
a long isolation period of Dh=30 days, but this parameter has no impact 
on our fitting procedure and the final parameter estimates. The dura-
tion from symptom onset to isolation was estimated to be Dq=21, 15, 
10, 6, and 3 days as the median time length from onset to confirmed 
diagnosis in each period, respectively1.

Based on the settings above, we specified the initial state of the model 
on December 31, 2019 (Extended Data Table 1). The initial number of 
ascertained symptomatic cases I(0) was specified as the number of 
ascertained cases with onset during December 29 to 31, 2019. We 
assumed the initial ascertainment rate was r0, and thus the initial num-
ber of unascertained cases was A r r I(0) = (1 − ) (0)0

−1
0 . We denoted PI(0) 

and EI(0) as the numbers of ascertained cases with onset during 
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January 1 to 2, 2020 and during January 3 to 5, 2020, respectively. Then, 
the initial numbers of exposed cases and presymptomatic cases were 
set as E r E(0) = (0)I0

−1  and P r P(0) = (0)I0
−1 , respectively. We assumed 

r0=0.23 in our main analysis based on the point estimate using the Sin-
gapore data (described above).

Estimation of parameters in the SAPHIRE model
Considering the time-varying strength of control measures, we 
assumed b=b12 and r=r12 for the first two periods, b=b3 and r=r3 for period 
3, b=b4 and r=r4 for period 4, and b=b5 and r=r5 for period 5. We assumed 
the observed number of ascertained cases with symptom onset on day 
d, denoted as xd, follows a Poisson distribution with rate λ rP D=d d p−1

−1, 
where Pd-1 is the expected number of presymptomatic cases on day 
(d-1). We fit the observed data from January 1 to February 29 (d=1, 2, …, 
D, and D=60) and used the fitted model to predict the trend from March 
1 to 8. Thus, the likelihood function is

∏L b b b b r r r r
e λ

x
( , , , , , , , ) =

!
(9)

d

D λ
d
x

d
12 3 4 5 12 3 4 5

=1

− d d

We estimated b12, b3, b4, b5, r12, r3, r4 and r5 by Markov Chain Monte Carlo 
(MCMC) with the Delayed Rejection Adaptive Metropolis (DRAM) algo-
rithm implemented in the R package BayesianTools (version 0.1.7)30. 
We used a non-informative flat prior of Unif(0, 2) for b12, b3, b4, and b5. 
For r12, we used an informative prior of Beta(7.3, 24.6) by matching the 
first two moments of the estimate using Singapore data (described 
above). We reparameterized r3, r4, and r5 by

r r δlogit( ) = logit( ) +3 12 3

r r δlogit( ) = logit( ) +4 3 4

r r δlogit( ) = logit( ) +5 4 5

where ( )rlogit( ) = log r
r1 −

. In the MCMC, we sampled δ3, δ4 and δ5 from 
the prior of N(0,1). We set a burn-in period of 40,000 iterations and 
continued to run 100,000 iterations with a sampling step size of 10 
iterations. We repeated MCMC with three different sets of initial values 
and assessed the convergence by the trace plot and the multivariate 
Gelman-Rubin diagnostic (Supplementary Information)31. Estimates 
of parameters were presented as posterior means and 95% credible 
intervals (CrIs) from 10,000 MCMC samples. All the analyses were 
performed in R (version 3.6.2) and the Gelman-Rubin diagnostic was 
calculated using the gelman.diag function in the R package coda (ver-
sion 0.19.3).

Stochastic simulations
We used stochastic simulations to obtain the 95% CrI of a fitted/pre-
dicted epidemic curve. Given a set of parameter values from MCMC, 
we performed the following multinomial random sampling:

U U U S p p p p( , , ) ~ Multinomial( ; , , 1 − − )S E S O S S t S E O S E O→ → → −1 → →

U U U E p p p p( , , ) ~ Multinomial( ; , , 1 − − )E P E O E E t E P O E P O→ → → −1 → →

U U U U

P p p p p p p

( , , , )

~ Multinomial( ; , , , 1 − − − )
P I P A P O P P

t P I P A O P I P A O

→ → → →

−1 → → → →

U U U I p p p p( , , ) ~ Multinomial( ; , , 1 − − )I H I R I I t I H I R I H I R→ → → −1 → → → →

U U U A p p p p( , , ) ~ Multinomial( ; , , 1 − − ).A R A O A A t A R O A R O→ → → −1 → →

U U H p p( , ) ~ Multinomial( ; , 1 − )H R H H t H R H R→ → −1 → →

U U R p p( , ) ~ Multinomial( ; , 1 − )R O R R t O O→ → −1

where O denotes the status of outflow population, p nN=O
−1 denotes 

the outflow probability, and other quantities are status transition  
probabilities, including p b αP αA I N= ( + + )S E t t t→ −1 −1 −1

−1 , p D=E P e→
−1 , 

p r D=P I p→
−1, p r D= (1 − )P A p→

−1, p D=I H q→
−1, p p D= =I R A R i→ →

−1,nd p D=H R h→
−1. 

The SAPHIRE model described by Eqs. 1–7 is equivalent to the following 
stochastic dynamics:

S S n U U− = − − (10)t t S E S O−1 → →

E E U U U− = − − (11)t t S E E P E O−1 → → →

P P U U U U− = − − − (12)t t E P P A P I P O−1 → → → →

A A U U U− = − − (13)t t P A A R A O−1 → → →

I I U U U− = − − (14)t t P I I H I R−1 → → →

H H U U− = − (15)t t I H H R−1 → →

R R U U U U− = + + − (16)t t A R I R H R R O−1 → → → →

We repeated the stochastic simulations for all 10,000 sets of parameter 
values sampled by MCMC to construct the 95% CrI of the epidemic 
curve by the 2.5 and 97.5 percentiles at each time point.

Prediction of epidemic ending date and the risk of resurgence
Using the stochastic simulations described above, we predicted the 
first day of no new ascertained cases and the date of clearance of all 
active infections in Wuhan, assuming continuation of the same conol 
measures as the last period (i.e., same parameter values).

We also evaluated the risk of outbreak resurgence after lifting control 
measures. We considered lifting all controls (1) at t days after the first 
day of zero ascertained cases, or (2) after a consecutive period of t days 
with no ascertained cases. After lifting controls, we set the transmis-
sion rate b, ascertainment rate r, and population movement n to be 
the same as the first period, and continued the stochastic simulation 
to the stationary state. Time to resurgence was defined as the number 
of days from lifting controls to when the number of active ascertained 
cases I reached 100. We performed 10,000 simulations with 10,000 sets 
of parameter values sampled from MCMC (as described above). We 
calculated the probability of resurgence as the proportion of simula-
tions in which a resurgence occurred, as well as the time to resurgence 
conditional on the occurrence of resurgence.

Simulation study for method validation
To validate the method, we performed two-period stochastic simula-
tions (Eqs. 10–16) with transmission rate b=b1=1.27, ascertainment 
rate r=r1=0.2, daily population movement n=500,000, and duration 
from illness onset to isolation Dq=20 days for the first period (so that 
Re=3.5 according to Eq. 8), and b=b2=0.41, r=r2=0.4, n=0, and Dq=5 for 
the second period (so that Re=1.2 according to Eq. 8). Lengths of both 
periods were set to 15 days, and the initial ascertainment rate was set to 
r0=0.3, while the other parameters and initial states were set as those in 
our main analysis (Extended Data Tables 1-2). We repeated stochastic 
simulations 100 times to generate 100 datasets. For each dataset, we 
applied our MCMC method to estimate b1, b2, r1 and r2, while setting 
all other parameters and initial values the same as the true values. We 
translated b1 and b2 into (Re)1 and (Re)2 according to Eq. 8, and focused 
on evaluating the estimates of (Re)1, (Re)2, r1 and r2. We also tested the 
robustness to misspecification of the latent period De, presymptomatic 
infectious period Dp, symptomatic infectious period Di, duration from 
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illness onset to isolation Dq, ratio of transmissibility between unascer-
tained and ascertained cases α, and initial ascertainment rate r0. In each 
test, we changed the specified value of a parameter (or initial state) 
to be 20% lower or higher than its true value, while keeping all other 
parameters unchanged. When we changed the value of r0 we adjusted 
the initial states A(0), P(0), and E(0) according to Extended Data Table 1.

For each simulated dataset, we ran the MCMC method with 20,000 
burn-in iterations and an additional 30,000 iterations. We sampled 
parameter values from every 10 iterations, resulting in 3,000 MCMC 
samples. We took the mean across 3,000 MCMC samples as the final 
estimates and displayed results for 100 repeated simulations.

Sensitivity analyses for the real data
We designed nine sensitivity analyses to test the robustness of our real 
data results. For each of the sensitivity analyses, we fixed parameters 
and initial states to be the same as the main analysis except for those 
mentioned below. (S1) Adjust the reported incidences from January 29 
to February 1 to their average. We suspect the spike of incidences on 
February 1 might be caused by approximate-date records among some 
patients admitted to the field hospitals after February 2. The actual 
illness onset dates for these patients were likely to be spread between 
January 29 and February 1. (S2) Assume an incubation period of 4.1 days 
(lower 95% CI from ref. 6) and presymptomatic infectious period of 1.1 
days (lower 95% CI from ref. 2 is 0.8 days, but our discrete stochastic 
model requires Dp>1), equivalent to set De=3 and Dp=1.1, and adjust P(0) 
and E(0) accordingly. (S3) Assume an incubation period of 7 days (upper 
95% CI from ref. 6) and presymptomatic infectious period of 3 days 
(upper 95% CI from ref. 2), equivalent to set De=4 and Dp=3, and adjust 
P(0) and E(0) accordingly. (S4) Assume the transmissibility of the unas-
certained cases is α=0.46 (lower 95% CI from ref. 15) of the ascertained 
cases. (S5) Assume the transmissibility of the unascertained cases is 
α=0.62 (upper 95% CI from ref. 15) of the ascertained cases. (S6) Assume 
the initial ascertainment rate is r0=0.14 (lower 95% CI of the estimate 
using Singapore data) and adjust A(0), P(0) and E(0) accordingly. (S7) 
Assume the initial ascertainment rate is r0=0.42 (upper 95% CI of the 
estimate using Singapore data) and adjust A(0), P(0) and E(0) accord-
ingly. (S8) Assume the initial ascertainment rate is r0=1 (theoretical 

upper limit) and adjust A(0), P(0), and E(0) accordingly. (S9) Assume 
no unascertained cases by fixing r0=r12=r3=r4=r5=1. We compared this 
simplified model to the full model using the Bayes factor.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The data analysed in this study are available on GitHub at https://github.
com/chaolongwang/SAPHIRE.

Code availability
Codes are available on GitHub at https://github.com/chaolongwang/
SAPHIRE.
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Extended Data Fig. 1 | Evaluation of the method on simulated data with two 
periods. (a-b) Illustration of one simulated dataset. We estimated b1, b2, r1, and 
r2 when the other parameters were specified to their true values. The red points 
represent the mean estimates while the shaded areas indicate 95% CrIs from 
3,000 MCMC samples. (c) Summary of results from 100 simulations. Each row 
represents an estimated parameter as indicated on the right, including (Re)1, 
(Re)2, r1, and r2. The grey dashed line in each row represents the true value of the 

parameter to be estimated. Each column represents a specified parameter as 
indicated on the top, including De, Dp, Di, Dq, α, and r0, which we specified as the 
true values or 20% lower or higher than the true values. Each box summarizes 
estimates from 100 replicates, of which the median is indicated by the 
horizontal line, the IQR is indicated by the lower and upper bounds, and the 
minimum and the maximum are indicated by the whiskers.
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Extended Data Fig. 2 | Estimation of R0 using daily incidence data starting 
from December 9. Following the main analysis, we assumed r0=0.23 and set 
I(0)=1, A(0)=3, E(0)=17 and P(0)=H(0)=R(0)=0 accordingly. We assumed 
transmission rate b, ascertainment rate r, and duration from illness onset to 
hospitalization Dq (set to 21 days) were the same until January 22, 2020. All the 
other settings were the same as in the main analysis. The shaded area in the plot 
indicates 95% CrIs estimated by the deterministic model with 10,000 sets of 
parameter values sampled from MCMC. Unlike other analyses, we did not 
construct 95% CrIs by stochastic simulations, because stochastic variation at 
the early days had very large impacts due to low counts. The inserted histogram 
shows the distribution of the estimated R0 from December 9, 2019 to January 
22, 2020, for which the mean estimate was 3.38 (95% CrI: 3.28-3.48).
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Extended Data Table 1 | Notations of compartments and the initial values for the main analysis

*The initial ascertainment rate r0 was assumed to be 0.23 in the main analysis. Day 1 was January 1, 2020.
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Extended Data Table 2 | Parameter settings for five periods in the main analysis
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Extended Data Table 3 | COVID-19 cases exported from 
Wuhan to Singapore before January 23, 2020

Source: https://co.vid19.sg/singapore/dashboard
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Extended Data Table 4 | Estimated transmission rates from the main and sensitivity analyses

*The estimates were displayed as mean (95% CrI) based on 10,000 MCMC samples. 
†Deviance Information Criterion (DIC) was presented for model comparison. Nevertheless, DIC of S1 is not comparable to the others because the data of S1 were modified by smoothing the 
outlier data point on February 1.
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Extended Data Table 5 | Estimated Re for different periods from the main and sensitivity analyses

*The estimates were displayed as mean (95% CrI) based on 10,000 MCMC samples.
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Extended Data Table 6 | Estimated ascertainment rates from the main and sensitivity analyses

*The estimates were displayed as mean (95% CrI) based on 10,000 MCMC samples.
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Extended Data Table 7 | Prediction of the ending date of 
COVID-19 epidemic in Wuhan from the main and sensitivity 
analyses

*First day of no ascertained infections means the first day of I=0. 
†Clearance of all infections means the first day of E=P=A=I=0. 
‡The estimates were displayed as mean date (95% CrI) based on 10,000 stochastic simulations 
with parameter values from MCMC sampling.
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Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection SAS version 9.4 was used for data collection.

Data analysis Data analysis was performed in R (version 3.6.2), alongside with third-party R packages BayesianTools (version 0.1.7) and coda (version 
0.19.3). R codes are available on Github via link: https://github.com/chaolongwang/SAPHIRE.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data are available on Github via link: https://github.com/chaolongwang/SAPHIRE.
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Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size This study contained 32,583 laboratory-confirmed COVID-19 cases between 18 Dec 2019 and 8 Mar 2020 in Wuhan. We included all 
laboratory-confirmed COVID-19 cases that were reported by 8 Mar 2020.

Data exclusions For the consistency of case definition throughout different time periods, we excluded COVID-19 cases diagnosed by clinical symptoms without 
SARS-CoV-2 virus confirmation by the real-time reverse-transcription-polymerase-chain-reaction (RT-PCR) assay or high-throughput 
sequencing of nasal and pharyngeal swab specimens. Exclusion criterion was pre-established.

Replication Not applicable because this study is retrospective and observational.

Randomization Not applicable because this study is retrospective and observational.

Blinding Not applicable because this study is retrospective and observational.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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